17 research outputs found

    PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle

    Get PDF
    Defective control of lipid metabolism leading to lipotoxicity causes insulin resistance in skeletal muscle, a major factor leading to diabetes. Here, we demonstrate that perilipin (PLIN) 5 is required to couple intramyocellular triacylglycerol lipolysis with the metabolic demand for fatty acids. PLIN5 ablation depleted triacylglycerol stores but increased sphingolipids including ceramide, hydroxylceramides and sphingomyelin. We generated perilipin 5 (Plin5)-/- mice to determine the functional significance of PLIN5 in metabolic control and insulin action. Loss of PLIN5 had no effect on body weight, feeding or adiposity but increased whole-body carbohydrate oxidation. Plin5-/- mice developed skeletal muscle insulin resistance, which was associated with ceramide accumulation. Liver insulin sensitivity was improved in Plin5-/- mice, indicating tissue-specific effects of PLIN5 on insulin action. We conclude that PLIN5 plays a critical role in coordinating skeletal muscle triacylglycerol metabolism, which impacts sphingolipid metabolism, and is requisite for the maintenance of skeletal muscle insulin action. © 2014 The Authors

    A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism

    No full text
    OCRL, whose mutations are responsible for Lowe syndrome and Dent disease, and INPP5B are two similar proteins comprising a central inositol 5-phosphatase domain followed by an ASH and a RhoGAP-like domain. Their divergent NH2-terminal portions remain uncharacterized. We show that the NH2-terminal region of OCRL, but not of INPP5B, binds clathrin heavy chain. OCRL, which in contrast to INPP5B visits late stage endocytic clathrin-coated pits, was earlier shown to contain another binding site for clathrin in its COOH-terminal region. NMR structure determination further reveals that despite their primary sequence dissimilarity, the NH2-terminal portions of both OCRL and INPP5B contain a PH domain. The novel clathrin-binding site in OCRL maps to an unusual clathrin-box motif located in a loop of the PH domain, whose mutations reduce recruitment efficiency of OCRL to coated pits. These findings suggest an evolutionary pressure for a specialized function of OCRL in bridging phosphoinositide metabolism to clathrin-dependent membrane trafficking

    Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer

    No full text
    Metabolism alterations are hallmarks of cancer, but the involvement of lipid metabolism in disease progression is unclear. We investigated the role of lipid metabolism in prostate cancer using tissue from patients with prostate cancer and patient-derived xenograft mouse models. We showed that fatty acid uptake was increased in human prostate cancer and that these fatty acids were directed toward biomass production. These changes were mediated, at least partly, by the fatty acid transporter CD36, which was associated with aggressive disease. Deleting Cd36 in the prostate of cancer-susceptible Pten⁻⁄⁻ mice reduced fatty acid uptake and the abundance of oncogenic signaling lipids and slowed cancer progression. Moreover, CD36 antibody therapy reduced cancer severity in patient-derived xenografts. We further demonstrated cross-talk between fatty acid uptake and de novo lipogenesis and found that dual targeting of these pathways more potently inhibited proliferation of human cancer-derived organoids compared to the single treatments. These findings identify a critical role for CD36-mediated fatty acid uptake in prostate cancer and suggest that targeting fatty acid uptake might be an effective strategy for treating prostate cancer.Matthew J. Watt, Ashlee K. Clark, Luke A. Selth, Vanessa R. Haynes, Natalie Lister, Richard Rebello, Laura H. Porter, Birunthi Niranjan, Sarah T. Whitby, Jennifer Lo, Cheng Huang, Ralf B. Schittenhelm, Kimberley E. Anderson, Luc Furic, Poornima R. Wijayaratne, Maria Matzaris, Magdalene K. Montgomery, Melissa Papargiris, Sam Norden, Maria Febbraio, Gail P. Risbridger, Mark Frydenberg, Daniel K. Nomura, Renea A. Taylo

    Production of recombinant human brain type I inositol-1,4,5-trisphosphate 5-phosphatase in Escherichia coli: lack of phosphorylation by protein kinase C

    No full text
    The dephosphorylation of inositol 1,4,5-trisphosphate (InsP3) to inositol 1,4-bisphosphate is catalyzed by InsP3 5-phosphatase. The coding region of human brain type I InsP3 5-phosphatase was expressed as a fusion protein with the maltose-binding protein (MBP) in Escherichia coli, using the pMAL-cR1 vector. The relative molecular mass of the purified fusion protein (MBP-InsP3-5-phosphatase) was approximately M(r) 85,000 as analysed by SDS/PAGE. The yield was about 10 mg fusion protein/l lysate. After cleavage from MBP with factor Xa, the specific activity of recombinant 5-phosphatase was 120-250 mumol.mg-1.min-1. The molecular mass of purified protein by SDS/PAGE was M(r) 43,000. The activity was inactivated by p-hydroxymercuribenzoate. The possibility that protein kinase C might phosphorylate InsP3 5-phosphatase was tested on the purified 43,000 M(r) protein. In this study, we show that recombinant 5-phosphatase is not a substrate of protein kinase C.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore