1,740 research outputs found
MALA-within-Gibbs samplers for high-dimensional distributions with sparse conditional structure
Markov chain Monte Carlo (MCMC) samplers are numerical methods for drawing samples from a given target probability distribution. We discuss one particular MCMC sampler, the MALA-within-Gibbs sampler, from the theoretical and practical perspectives. We first show that the acceptance ratio and step size of this sampler are independent of the overall problem dimension when (i) the target distribution has sparse conditional structure, and (ii) this structure is reflected in the partial updating strategy of MALA-within-Gibbs. If, in addition, the target density is blockwise log-concave, then the sampler's convergence rate is independent of dimension. From a practical perspective, we expect that MALA-within-Gibbs is useful for solving high-dimensional Bayesian inference problems where the posterior exhibits sparse conditional structure at least approximately. In this context, a partitioning of the state that correctly reflects the sparse conditional structure must be found, and we illustrate this process in two numerical examples. We also discuss trade-offs between the block size used for partial updating and computational requirements that may increase with the number of blocks
Spectral tensor-train decomposition
The accurate approximation of high-dimensional functions is an essential task
in uncertainty quantification and many other fields. We propose a new function
approximation scheme based on a spectral extension of the tensor-train (TT)
decomposition. We first define a functional version of the TT decomposition and
analyze its properties. We obtain results on the convergence of the
decomposition, revealing links between the regularity of the function, the
dimension of the input space, and the TT ranks. We also show that the
regularity of the target function is preserved by the univariate functions
(i.e., the "cores") comprising the functional TT decomposition. This result
motivates an approximation scheme employing polynomial approximations of the
cores. For functions with appropriate regularity, the resulting
\textit{spectral tensor-train decomposition} combines the favorable
dimension-scaling of the TT decomposition with the spectral convergence rate of
polynomial approximations, yielding efficient and accurate surrogates for
high-dimensional functions. To construct these decompositions, we use the
sampling algorithm \texttt{TT-DMRG-cross} to obtain the TT decomposition of
tensors resulting from suitable discretizations of the target function. We
assess the performance of the method on a range of numerical examples: a
modifed set of Genz functions with dimension up to , and functions with
mixed Fourier modes or with local features. We observe significant improvements
in performance over an anisotropic adaptive Smolyak approach. The method is
also used to approximate the solution of an elliptic PDE with random input
data. The open source software and examples presented in this work are
available online.Comment: 33 pages, 19 figure
Exploiting network topology for large-scale inference of nonlinear reaction models
The development of chemical reaction models aids understanding and prediction
in areas ranging from biology to electrochemistry and combustion. A systematic
approach to building reaction network models uses observational data not only
to estimate unknown parameters, but also to learn model structure. Bayesian
inference provides a natural approach to this data-driven construction of
models. Yet traditional Bayesian model inference methodologies that numerically
evaluate the evidence for each model are often infeasible for nonlinear
reaction network inference, as the number of plausible models can be
combinatorially large. Alternative approaches based on model-space sampling can
enable large-scale network inference, but their realization presents many
challenges. In this paper, we present new computational methods that make
large-scale nonlinear network inference tractable. First, we exploit the
topology of networks describing potential interactions among chemical species
to design improved "between-model" proposals for reversible-jump Markov chain
Monte Carlo. Second, we introduce a sensitivity-based determination of move
types which, when combined with network-aware proposals, yields significant
additional gains in sampling performance. These algorithms are demonstrated on
inference problems drawn from systems biology, with nonlinear differential
equation models of species interactions
Efficient Localization of Discontinuities in Complex Computational Simulations
Surrogate models for computational simulations are input-output
approximations that allow computationally intensive analyses, such as
uncertainty propagation and inference, to be performed efficiently. When a
simulation output does not depend smoothly on its inputs, the error and
convergence rate of many approximation methods deteriorate substantially. This
paper details a method for efficiently localizing discontinuities in the input
parameter domain, so that the model output can be approximated as a piecewise
smooth function. The approach comprises an initialization phase, which uses
polynomial annihilation to assign function values to different regions and thus
seed an automated labeling procedure, followed by a refinement phase that
adaptively updates a kernel support vector machine representation of the
separating surface via active learning. The overall approach avoids structured
grids and exploits any available simplicity in the geometry of the separating
surface, thus reducing the number of model evaluations required to localize the
discontinuity. The method is illustrated on examples of up to eleven
dimensions, including algebraic models and ODE/PDE systems, and demonstrates
improved scaling and efficiency over other discontinuity localization
approaches
Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations
We construct a new framework for accelerating Markov chain Monte Carlo in
posterior sampling problems where standard methods are limited by the
computational cost of the likelihood, or of numerical models embedded therein.
Our approach introduces local approximations of these models into the
Metropolis-Hastings kernel, borrowing ideas from deterministic approximation
theory, optimization, and experimental design. Previous efforts at integrating
approximate models into inference typically sacrifice either the sampler's
exactness or efficiency; our work seeks to address these limitations by
exploiting useful convergence characteristics of local approximations. We prove
the ergodicity of our approximate Markov chain, showing that it samples
asymptotically from the \emph{exact} posterior distribution of interest. We
describe variations of the algorithm that employ either local polynomial
approximations or local Gaussian process regressors. Our theoretical results
reinforce the key observation underlying this paper: when the likelihood has
some \emph{local} regularity, the number of model evaluations per MCMC step can
be greatly reduced without biasing the Monte Carlo average. Numerical
experiments demonstrate multiple order-of-magnitude reductions in the number of
forward model evaluations used in representative ODE and PDE inference
problems, with both synthetic and real data.Comment: A major update of the theory and example
Localization for MCMC: sampling high-dimensional posterior distributions with local structure
We investigate how ideas from covariance localization in numerical weather
prediction can be used in Markov chain Monte Carlo (MCMC) sampling of
high-dimensional posterior distributions arising in Bayesian inverse problems.
To localize an inverse problem is to enforce an anticipated "local" structure
by (i) neglecting small off-diagonal elements of the prior precision and
covariance matrices; and (ii) restricting the influence of observations to
their neighborhood. For linear problems we can specify the conditions under
which posterior moments of the localized problem are close to those of the
original problem. We explain physical interpretations of our assumptions about
local structure and discuss the notion of high dimensionality in local
problems, which is different from the usual notion of high dimensionality in
function space MCMC. The Gibbs sampler is a natural choice of MCMC algorithm
for localized inverse problems and we demonstrate that its convergence rate is
independent of dimension for localized linear problems. Nonlinear problems can
also be tackled efficiently by localization and, as a simple illustration of
these ideas, we present a localized Metropolis-within-Gibbs sampler. Several
linear and nonlinear numerical examples illustrate localization in the context
of MCMC samplers for inverse problems.Comment: 33 pages, 5 figure
- …
