1,265 research outputs found

    Lattice Boltzmann scheme for relativistic fluids

    Full text link
    A Lattice Boltzmann formulation for relativistic fluids is presented and numerically verified through quantitative comparison with recent hydrodynamic simulations of relativistic shock-wave propagation in viscous quark-gluon plasmas. This formulation opens up the possibility of exporting the main advantages of Lattice Boltzmann methods to the relativistic context, which seems particularly useful for the simulation of relativistic fluids in complicated geometries.Comment: Submitted to PR

    Exact Riemann solver for non-convex relativistic hydrodynamics

    Get PDF
    Altres ajuts: acords transformatius de la UABWe present the general analytical solution of the Riemann problem (decay of a jump discontinuity) for non-convex relativistic hydrodynamics. In convex dynamics, an elementary nonlinear wave, i.e. a rarefaction or a shock, originates at the discontinuity and travels towards one of the initial states. Between the left and right waves, an equilibrium state appears represented by a contact discontinuity. The exact solution to the Riemann problem in convex relativistic hydrodynamics was first addressed by Martí & MÜller (J. Fluid Mech., vol. 258, 1994, pp. 317-333). In non-convex dynamics, two sequences of elementary nonlinear waves move towards the left and right initial states. Solving the Riemann problem involves determining the types of wave developing and the equilibrium state where they coincide. The procedure consists of constructing the wave curves associated with the nonlinear waves in the pressure-velocity phase space, where the intersection of the wave curves indicates the equilibrium state. We describe the relation between the wave curves, the explicit formulas for their calculation, and the outline of the process for a correct derivation and representation of the waves in the spatial domain. We present examples of the exact solution of a Riemann problem that illustrate the complex phenomena of non-convex dynamics by using the phenomenological non-convex equation of state proposed by Ibáñez et al. (Mon. Not. R. Astron. Soc., vol. 476, 2017, pp. 1100-1110)

    Application of magnetically induced hyperthermia on the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections

    Full text link
    Magnetic hyperthermia is currently an EU-approved clinical therapy against tumor cells that uses magnetic nanoparticles under a time varying magnetic field (TVMF). The same basic principle seems promising against trypanosomatids causing Chagas disease and sleeping sickness, since therapeutic drugs available display severe side effects and drug-resistant strains. However, no applications of this strategy against protozoan-induced diseases have been reported so far. In the present study, Crithidia fasciculata, a widely used model for therapeutic strategies against pathogenic trypanosomatids, was targeted with Fe_{3}O_{4} magnetic nanoparticles (MNPs) in order to remotely provoke cell death using TVMFs. The MNPs with average sizes of d approx. 30 nm were synthesized using a precipitation of FeSO_{4}4 in basic medium. The MNPs were added to Crithidia fasciculata choanomastigotes in exponential phase and incubated overnight. The amount of uploaded MNPs per cell was determined by magnetic measurements. Cell viability using the MTT colorimetric assay and flow cytometry showed that the MNPs were incorporated by the cells with no noticeable cell-toxicity effects. When a TVMF (f = 249 kHz, H = 13 kA/m) was applied to MNP-bearing cells, massive cell death was induced via a non-apoptotic mechanism. No effects were observed by applying a TVMF on control (without loaded MNPs) cells. No macroscopic rise in temperature was observed in the extracellular medium during the experiments. Scanning Electron Microscopy showed morphological changes after TVMF experiments. These data indicate (as a proof of principle) that intracellular hyperthermia is a suitable technology to induce the specific death of protozoan parasites bearing MNPs. These findings expand the possibilities for new therapeutic strategies that combat parasitic infections.Comment: 9 pages, four supplementary video file

    FPGA Implementation of an Adaptive Noise Canceller for Robust Speech Enhancement Interfaces

    Get PDF
    This paper describes the design and implementation results of an adaptive Noise Canceller useful for the construction of Robust Speech Enhancement Interfaces. The algorithm being used has very good performance for real time applications. Its main disadvantage is the requirement of calculating several operations of division, having a high computational cost. Besides that, the accuracy of the algorithm is critical in fixed-point representation due to the wide range of the upper and lower bounds of the variables implied in the algorithm. To solve this problem, the accuracy is studied and according to the results obtained a specific word-length has been adopted for each variable. The algorithm has been implemented for Altera and Xilinx FPGAs using high level synthesis tools. The results for a fixed format of 40 bits for all the variables and for a specific word-length for each variable are analyzed and discussed
    corecore