
2008 4th Southern Conference on Programmable Logic

FPGA IMPLEMENTATION OF AN ADAPTIVE NOISE CANCELLER FOR
ROBUST SPEECH ENHANCEMENT INTERFACES

V. Rodellar, A. Alvarez, C. Cónzalez, and
P.Gómez

 Facultad de Informática
 Universidad Politécnica de Madrid

 28660 Madrid - Spain
 victoria@pino.datsi.fi.upm.es

E. Martínez

Escuela Universitaria de Informática
 Universidad Politécnica de Madrid

 Carretera de Valencia Km 7
 28031 – Madrid -Spain

ABSTRACT

This paper describes the design and implementation results
of an adaptive Noise Canceller useful for the construction
of Robust Speech Enhancement Interfaces. The algorithm
being used has very good performance for real time
applications. Its main disadvantage is the requirement of
calculating several operations of division, having a high
computational cost. Besides that, the accuracy of the
algorithm is critical in fixed-point representation due to the
wide range of the upper and lower bounds of the variables
implied in the algorithm. To solve this problem, the
accuracy is studied and according to the results obtained a
specific word-length has been adopted for each variable.
The algorithm has been implemented for Altera and Xilinx
FPGAs using high level synthesis tools. The results for a
fixed format of 40 bits for all the variables and for a
specific word-length for each variable are analyzed and
discussed.

1. INTRODUCTION

The Adaptive Noise Canceller here described, is devoted to
the construction of Robust Speech Enhancement Interfaces
to be used in adverse environments with high levels of
noise, whose spectral power characteristics are
continuously changing. This previous pre-processing step
has several applications as Robust Speech Recognition
interfaces for their use in Command-Driven systems, such
as advanced videogames, virtual reality applications; man-
machine communications in computer aided manufacturing,
intercommunication systems in factories, aircraft cockpit
communications, etc. These environments are characterized
by high noise levels (more than 95 dB) produced by
costumer’s chatting, ambient music, sirens, motors, etc.
 There are different techniques to reduce noise levels [1]
[2]. Adaptive Noise Cancellation for non-stationary
environments in the time domain is an adequate technique

This work is funded by grant TIC2006-12887-C02-00 and
projects HESPERIA, IBIOL (CCG06-UPM/INF-2) and
SIBMATI (FIT-3600000-2007-32).

offering a competitive performance. This filter computes
the input information sample by sample which is very
convenient for real time processing but its principal
disadvantages are the need of calculating several
multiplication and division operations and the wide range in
the upper and lower bounds of the variables implied in the
algorithm.
 The implementation of these algorithms has been
carried out traditionally with general-purpose DSP
microprocessors using floating-point arithmetic. These
implementations minimize round-off errors but tend to be
limited in processing speed because they have usually
available a single or a few processing units. In DSP
microprocessors word-length implementation is defined by
the hard-wired architecture but in reconfigurable computing
the size of each variable may be customized in order to get
the best trade-offs in numerical precision, speed, size and
power consumption. It is shown that reconfigurable
computing designs are capable of achieving up to 500 times
speed up and 70% energy over microprocessor
implementations for specific applications [3].
 The most difficult task in translating an algorithm
written in MATLAB, for a general-purpose processor or
DSP microprocessor into an algorithm optimized for
custom logic, is the floating-point to fixed-point conversion
due to accuracy problems [4]. The problem of word-length
optimization is NP-hard [5] and different approaches have
been adopted and tools developed for its treatment [4][6].
These tools are very helpful in the solution searching space
but automatic translation from them can not be applied in a
blind manner because the results are not good enough when
accuracy is critical, such as the case presented in this paper.
For this reason the automatic translation to fixed-point
arithmetic has been disregarded in favor of C for fixed-
point modeling.

2. NOISE CANCELLATION

The noise canceller under study has interesting
characteristics for applications that demand speech
enhancement techniques, some of them being mentioned
next: No prior knowledge of the characteristics of the signal

978-1-4244-1992-0/08/$25.00 © IEEE 13

2008 4th Southern Conference on Programmable Logic

or noise is needed, it shows a very good behavior in highly
non-stationary environments, preserves the quality of the
speech, provides an immediate response, makes the further
processing of the speech possible, and removes interfering
sources arriving in similar conditions to both channels. No
band suppression or artificial tone introduction was
appreciated in direct hearings, the quality of the resulting
speech being noticeable good.

2.1. Filter structure

The recording scheme is based on a two-microphone
structure as shown in Fig.1. One for noisy speech (primary,
x(n)) and the other the noise in itself (reference, ra(n)). The
speech source is assumed to be well separated from the
reference microphone to avoid crosstalk. The noise is
estimated by a lattice filter (which is adapted by its
estimation errors), its backward residuals being used to
adapt the weights of a ladder filter in combination with the
noise estimation generated. Clean speech is then obtained
as the error output of the ladder filter.

X

 x(n)

 gm(n) em(n)

 ra(n)

Fig. 1. General framework for noise removal

2.2. Computational analysis

The aspects which have more influence in the
computational complexity of the algorithm are the sampling
frequency (11025 Hz, enough for speech) and the number
of stages of the lattice filter (14, required to support two
microphones separated 20 cm), for these characteristics a
cancellation average from 6 to 12 dB is obtained. The filter
is recursive in the order of the lattice filter (m) and in time
(n). The convergence rate of the algorithm is good and has a
computational complexity of N. The stages for the
calculation of the algorithm are three: initialization, lattice
and ladder.

 Variable initialization is shown in Table 1. The adaptive
parameter α for samples and stages is set to one, and the
adaptation step ω=0,9999. The initial values of the residual
backward and forward errors for sample treatment are fixed
to ε = 5.108, this value ensuring a high lock-up performance
under acceptable stability conditions.

Table 1. Variable initialization
Adjust parameter αm (-1) = 1

Parcor
coefficient

km (-1) = 0

Residual errors rb
m (-1) = rf

m(0) = ε > > 0
Gain factor aux. dm (-1) = 0

Sa
m

pl
es

(n

)

Adjust parameter α0 (n) = 1
Estimated noise /clean signal

xe
 0 (n + 1) = e0 (n + 1)

Forward and backward errors
f0 (n + 1) = b0 (n + 1) = ra (n + 1)

 Forward and backward residual errors
rf

0
 (n + 1) = rb

0 (n + 1) = ω rf
0 (n) + | ra

 (n + 1)|2

St
ag

es

(m
)

 The lattice filter computation is the most expensive part
of the noise removal algorithm, as show in Table 2. It
begins with n = 0 and computes the updates for m = 0, 1, …
N-2; with N = 14. The first step is to update the Parcor
coefficient for the next stage and from it to calculate the
reflection coefficients. The forward and backward errors,
and the forward and backward residual errors are evaluated
next. Finally, the adaptive parameter is estimated.

Table 2. Lattice calculation
Parcor coefficients

km+1 (n) = ω km+1 (n - 1) + αm (n - 1) fm (n) bm (n - 1) (1)
Reflection coefficients

1)(nr
(n)kψ

1)(nr
(n)kψ f

m

1mb
1mb

m

1mf
1m

−
−=

−
−= +

+
+

+

 (2)

Forward and backward errors
fm+1 (n + 1) = fm (n + 1) + ψf

m+1(n) bn(n)
bm+1 (n + 1) = bm (n) + ψb

m+1(n) fn(n + 1)

 (3)

Forward and backward residual errors

(n)r

(n)k
1) -(n r(n)r

1)(nr

(n)k
(n)r(n)r

f
m

2
1mb

m
b

1m

b
m

2
1mf

m
f

1m

+
+

+
+

−=

−
−=

(4)

Adjust parameter

(n)r

(n)b(n)α
 - (n)α(n)α b

 m

2
mm

m 1m

2

=+

 (5)

 The ladder filter calculates the gain factor, estimates the
noise and produces the clean signal as a final result (see

Reference
microphone

Noise
source

Speech
source

Ladder
filter

Clean Speech
em+1(n)

Primary
microphone

Lattice
filter

Noise
Estimation

xe
m(n)

978-1-4244-1992-0/08/$25.00 © IEEE 14

2008 4th Southern Conference on Programmable Logic

Table 3). It begins with n = 0 and computes the updates for
m = 0, 1 … N-1; with N = 14.

Table 3. Ladder calculation
Gain factor aux.

dm(n) = ω dm(n – 1) + αm(n) bm(n) em(n)

 (6)

Gain factor
(n)r
(n)d(n)g b

m

m
m −=

(7)

Estimate noise
xe

m(n) = xe
m-1(n) + bm(n) gm(n)

(8)

Clean signal
em+1(n + 1) = em(n + 1) + gm(n) bm(n + 1)

 (9)

 The algorithm demands 9 additions, 15 multiplications
and 6 divisions per stage. The previous figures have to be
multiplied by the number of stages to evaluate the number
of operations required per sample. To have an idea of the
computational cost in a real platform, we had implemented
the algorithm in two different DSP microprocessors. The
first implementation was done in a TSM320C1-50. The
C31 is a 50 MHz, 32-bit floating point, with a
computational pick power of 50 MFLOPS and 25 MIPS.
These figures can be achieved executing two instructions in
parallel in a 40 ns cycle basis. In this case, the algorithm
demanded the 96% of the total available DSP
computational power. The second implementation was done
in a more modern and powerful microprocessor, the ADSP-
21261-150. The ADSP is a 32-40 bit floating point
microprocessor which features an instruction cycle time of
6,67 ns at 150 MHz. With its SIMS computational
hardware it reaches 900 MFLOPS. The microprocessor
overload was 5,65 in this case. The main reason for this
costly computational load is due to the fact that both DSP
microprocessors lack the division operation implemented in
hardware, which is a common practice in most DSP
microprocessors. If the computational cost of the algorithm
is an obvious disadvantage, it presents the advantage of the
very small amount of memory required, because the
processing of the speech samples can be done as soon as
they become available, therefore only a small array for
speech input data is needed instead of large buffers.

3. WORD-LENGTH ESTIMATION

The algorithm was coded in ANSI-C and tested with a set
of commands in English and Spanish. The command set
was recorded from 32 speakers of both sexes (equally
distributed) in an age from 20 to 45. The records were
acquired under strong environmental noisy conditions (95-
100 dB). The English command set being used was:

double, down, eight, end, five, four, go, hit, jump, last, left,
next, nine, no, off, on, right, seven, six, split, start, stop,
ten, turn, two, up, yes and zero. The set of Spanish
commands used was: aceptar, adelante, detrás, cancelar,
cero, cinco, cuatro, dos, enviar, establecer, fax,
información, internet, marcar, mensaje, menú, nueve,
ocho, recibir, repetir, seis, servicio, siete, teléfono, texto,
tres, and uno.
 The bounds for the worst case results in floating-point
arithmetic are shown in Table 4. As the final
implementation of the algorithm is to be carried out using
reconfigurable logic by high level synthesis
methodologies, the limitation of the synthesis tools in
using integer data types must be specially taken into
consideration, due to the implications in the algorithm
computation accuracy [7].

Table 4. Upper and lower bounds of variables

UPPER
BOUND

LOWER
BOUND

Reference
channel sample

ra(n)2 12.411.529,00 0,00
Initial residual
forward and

backward errors
r0

f(n+1) =
r0

b(n+1) 1.663.767.296,00 76.082.344,00
Parcor coefficient

km+1(n) 1.318.524.032,00 -314.949.312,00
Reflection

Coefficients
Ψm+1

f(n)
Ψm+1

b(n)
0,56
0,56

-0,80
-0,80

Forward error
fm+1(n) 2.497,71 -2.864,51

Backward error
bm+1(n) 2.281,11 -2.788,99

Residual forward
error rf

m+1(n) 728.626.176,00 76.068.048,00
Residual

backward error
rb

m+1(n) 728.131.264,00 76.067.752,00
Adaptive

parameter αm+1(n) 1,00 0,96
Auxiliary variable

for gain factor
dm(n) 2.598.985.472,00 -144.405.008,00

Gain factor gm(n) 0,43 -2,13
Estimate noise

xem(n) 5.038,00 -5.142,00

Clean signal em(n) 5.414,00 -4.532,00

978-1-4244-1992-0/08/$25.00 © IEEE 15

2008 4th Southern Conference on Programmable Logic

 In Table 4 a large dispersion on variable bounds can be
observed. The reflection coefficients, the adaptive
parameter, and the gain factor take values below one and
they can not be represented as integer numbers. On the
other hand, the auxiliary variable to calculate the gain
factor takes a value that exceeds the range of
representation for integer numbers (-2.147.483.648, +
2.147.483.647). A first approximation to the problem was
to work with integer numbers and to scale the conflictive
variables. This was carried out heuristically by multiplying
the variables with small values to make them significant
and by dividing the variables close to the upper bound of
the integer representation, undoing those changes later on.
This approximation didn’t give good results mainly
because to adjust the scale parameters was very difficult
taking into consideration the recursive algorithm. A second
approach was to work with floating-point arithmetic but
considering the results as integer numbers. In this case, the
upper bound didn’t present any problem; the problem
resided in variables taking values below one. The most
critical variable in this case is the adaptive parameter
αm+1(n) due to its significance in the algorithm feedback
adaptation. The evolution of these values for a typical case
is shown in Table 5. It can be observed that the three more
significant figures remain unchanged. And changes may be
appreciated in the last significant figure from 10-4 to 10-6

positions. Thus, to consider the influence of this last
significant figure the adaptive parameter must be scaled by
106 or 220 having in mind the hardware implementation of
this scale factor. The reflection coefficients and the
adaptation step were scaled in the same proportion than the
adaptive parameter. The gain factor requires to be scaled
by 104 or 214from the same analysis than in the case of the
adaptive parameter.

Table 5. Adaptive variable values evolution

 Taking into consideration the values of the scale factor
mentioned before, an exhaustive simulation study has been
carried out in order to adjust the number of bits for each
variable (NB). This factor has been adjusted according to
the values of the lower and upper bounds obtained during

the computation of the algorithm for all the commands
enclosed in the proprietary data base mentioned before.
The criterion to validate results consisted in estimating the
errors between the clean signals obtained in floating point
format considering them as integer numbers including the
scaling factor. The clean waveform result has also been
listened to subjectively evaluate the quality of command
intelligibility. Table 6 summarizes the optimal word-length
for each variable and its associated scale factor.

Table 6. Final word-length adjust

 NB Scale factor

ra(n)2 31 NO

r0
f(n) = r0

b(n) 40 NO

km+1(n) 39 NO

Ψf
m(n) 21 * 2 ^ 20

Ψb
m(n) 21 * 2 ^ 20

fm+1(n) 16 NO

bm+1(n) 16 NO

rf
m+1(n) 38 NO

rb
m+1(n) 38 NO

αm(n) 22 * 2 ^ 20

dm(n) 39 NO

gm(n) 17 * 2 ^ 14

xem(n) 16 NO

em+1(n) 16 NO

 To give an idea about the quality of results, the words
down and eight corrupted by noise are shown in Figure 2a).
The clean signal obtained after floating point computation
is shown in Fig. 2b) and finally the clean signal obtained
using the word-length and parameters from Table 3 are
presented in Fig 2c). When comparing the clean trace
obtained with float point arithmetic and with optimally
adjusted word length it can be concluded that the results
are interchangeable.

…
0,999682
0,999785
0,999738
0,999726
0,999715
0,999578
0,999575
0,999666
0,999560
0,999708
……

a)

978-1-4244-1992-0/08/$25.00 © IEEE 16

2008 4th Southern Conference on Programmable Logic

Fig. 2. Results for floating point arithmetic and optimized

word sizes

4. IMPLEMENTATION RESULTS

The algorithm description has been carried out in ANSI C
and automatically translated into VHDL by means of the
CATAPULT-C tool from Mentor Graphics [8]. Later on,
the VHDL resulting code was synthesized by the Quartus II
from Altera and ISE from Xilinx tools. The results
presented next correspond to two word-length cases. The
first case, considers a fixed 40 bit word-data format for all
the variables implied in the algorithm because it is the
longest data format needed after optimization. The second
one uses the word-length adjusted ad hoc after optimization
for each variable according to Table 6. Table 7 shows the
Altera results for the device EP2S15F484C3 from the
Stratix family. Table 8 shows the Xilinx results for the
device 4vsx25ff668 from Virtex II family. The first column
of both tables indicates the parameter to evaluate: physical
resources, frequency and power dissipation. The available
amount of physical resources is indicated between
parentheses. The results are indicated by the absolute total
amount of physical resources used and its percentage from
the total resources available in the device. The power
estimation is obtained for an 80% of test coverage. Finally,
the last column indicates the performance improvements in
the word-length adjusted case.
 The Altera results from Table 7 show that there is a
reduction of the 37 % in the ALUTs, 41,5 % in registers
and 32,3 in the bits of memory. But these reduction rates
seem to imply a 68,7 % increment in the DSP blocks

needed. The frequency increments a 5,1 %. And the
significant number of a 30,8 % of reduction is achieved in
the dynamic power.

Table 7. Synthesis results for Altera
Parameter 40 bits Optimal Gain

ALUTs
(12.480)

10.846
(87 %)

6.831
(55 %)

+ 37 %

Registers
(14.410)

7.670
(53 %)

4.487
(31 %)

+ 41,5 %

Memory
bits

(419.328)

10.240

(2,44 %)

6.928

(1,65 %)

+ 32,3 %
DSP blocks
 9 bits (96)

32
(33 %)

54
(56 %)

- 68,7 %

 Frequency
Max

114,8
 MHz.

120.7
 MHz.

+ 5,1 %

Dynamical
 Power

201.71
 mW

139,62
mW

+ 30,8 %

Statical
Power

359,88
 mW

345,79
mW

+ 4 %

b)

c)

 Concerning the results for Xilinx shown in Table 8, a
similar saving percentage is found for function generators,
CLB slices and Dff, this being a 28,1 % for RAM blocks.
The DSP blocks show the same tendency than the Altera
case increasing a 100 %. Not significant differences for
frequency and power dissipation were observed.

Table 8. Synthesis results from Xilinx
Parameter 40 bits Optimal Gain

Function
generators
(20.480)

7.640

(37 %)

4.846
(24 %)

+ 36,6 %
CLB slices
(10.240)

3.937
(38 %)

2.529
(25 %)

+ 35,8 %

Dff or
latches

(21.440)

7.873

(37 %)

5.058
(24 %)

+ 35,8 %
RAM
blocks
(128)

32

(25 %)

23

(18 %)

+ 28,1 %
DSP

blocks 48
bits (128)

12

(9 %)

24

(18 %)

- 100 %
Max

Frequency
91, 02
MHz.

91,30
MHz.

+ 0,3 %

Dynamical
Power

160,48
mW

159,8
mW

+ 0,12 %

Statical
Power

280,1
 mW

279,3
 mW

+ 0,28 %

 The Altera and Xilinx results can’t be strictly compared
because the FPGAs being used in the implementations have
different characteristics and the synthesis, optimization and

978-1-4244-1992-0/08/$25.00 © IEEE 17

2008 4th Southern Conference on Programmable Logic

978-1-4244-1992-0/08/$25.00 © IEEE 18

mapping modules of the tools may not use the same
strategies. Physical resource demand in the optimal case
shows the same tendency for both tools, a reduction for the
generation of combinational and memory parts and an
increment in the number of DSP blocks. This increment is
natural as the number of bits decreases because the tool can
map functionality more easily to DSP units according to its
number of bits, 9 for Altera and 48 for Xilinx. The
maximum clock frequency and dynamical power show a
better behaviour for Altera than for Xilinx.

5. CONCLUSION

A study on word-length optimization of a speech
enhancement noise-cancelling filter has been presented.
The optimization has been carried out taking a set of spoken
commands from a data base as a reference. Initially, the
upper and lower bounds of the variables implicated in the
algorithm were determined in float point calculation. These
initial results evidence that the most critical variable is the
filter adaptation step αm(n). The procedure used in the case
of this variable serves as a model to scale the rest of the
variables. To properly optimize the length of each
individual variable an exhaustive simulation with all the
spoken commands has been carried out. When comparing
the clean trace produced with float-point arithmetic using
an optimally adjusted word length it can be concluded that
the results are comparable. Finally, the longest data-format
after optimization was implemented for all the variables and
contrasted with the data format optimized for each one of
them. The quality of the results shows a high dependency

on the tools and implementation devices when design
methodologies based on high level synthesis are used.

6. REFERENCES

[1] S. Haykin, “Adaptive Filter Theory,” Prentice Hall, 1996.

[2] S. Proakis, “Digital Commnunications,” McGraw Hill, 1989.

[3] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O.
Mencer, W. Luk and P. Y. K. Cheung, “Reconfigurable
computing: architectures and design methods,” IEE Proc.
Comput. Digit Tecn., vol. 152, no. 2, pp. 193–207, March
2005.

[4] Thomas Hill, “AccelDSP Synthesis Tool Floating-Point to
Fixed-Point Conversion of MATLAB Algorithm Targeting
FPGAs,” Xilinx Whitepaper (WP239-V1.0), April. 2006.

[5] G. A. Constantinides and G. J. Woeginger, “The Complexity
of multiple word length assignement,” Applied Mathematics
Letters, vol. 15, no. 2, pp. 137-140, 2002.

[6] Mark L. Chang and S. Hauck, “Précis: A Usercentric Word-
Length Optimization Tool,” IEEE Design & Test of
Computers, pp. 349–361, July-August 2005.

[7] K. Kung and W. Sung, “Combined word-length optimization
and high-level synthesis of digital processing systems,”
IEEE Trans. on Computer Aided Design, vol. 20, no. 8, pp.
931-930, 2001

[8] S. McCloud, “Catapult-C, Synthesis-based design flow:
speeding implementation and increasing flexibility,” White
paper. Mentor Graphics, 2004.

	1. INTRODUCTION
	2. NOISE CANCELLATION
	2.1. Filter structure
	2.2. Computational analysis

	3. WORD-LENGTH ESTIMATION
	4. IMPLEMENTATION RESULTS
	5. CONCLUSION
	6. REFERENCES

