
2008 4th Southern Conference on Programmable Logic 

FPGA IMPLEMENTATION OF AN ADAPTIVE NOISE CANCELLER FOR  
ROBUST SPEECH ENHANCEMENT INTERFACES

V. Rodellar, A. Alvarez, C. Cónzalez, and 
P.Gómez 

  Facultad de Informática 
  Universidad Politécnica de Madrid 

  28660 Madrid - Spain 
  victoria@pino.datsi.fi.upm.es 

E. Martínez 

Escuela Universitaria de Informática 
  Universidad Politécnica de Madrid 

  Carretera de Valencia Km 7 
 28031 – Madrid -Spain 

ABSTRACT 

This paper describes the design and implementation results 
of an adaptive Noise Canceller useful for the construction 
of Robust Speech Enhancement Interfaces. The algorithm 
being used has very good performance for real time 
applications. Its main disadvantage is the requirement of 
calculating several operations of division, having a high 
computational cost. Besides that, the accuracy of the 
algorithm is critical in fixed-point representation due to the 
wide range of the upper and lower bounds of the variables 
implied in the algorithm. To solve this problem, the 
accuracy is studied and according to the results obtained a 
specific word-length has been adopted for each variable. 
The algorithm has been implemented for Altera and Xilinx 
FPGAs using high level synthesis tools. The results for a 
fixed format of 40 bits for all the variables and for a 
specific word-length for each variable are analyzed and 
discussed. 

1. INTRODUCTION 

The Adaptive Noise Canceller here described, is devoted to 
the construction of Robust Speech Enhancement Interfaces 
to be used in adverse environments with high levels of 
noise, whose spectral power characteristics are 
continuously changing. This previous pre-processing step 
has several applications as Robust Speech Recognition 
interfaces for their use in Command-Driven systems, such 
as advanced videogames, virtual reality applications; man-
machine communications in computer aided manufacturing, 
intercommunication systems in factories, aircraft cockpit 
communications, etc. These environments are characterized 
by high noise levels (more than 95 dB) produced by 
costumer’s chatting, ambient music, sirens, motors, etc. 
  There are different techniques to reduce noise levels [1] 
[2]. Adaptive Noise Cancellation for non-stationary 
environments in the time domain is an adequate technique 
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offering a competitive performance. This filter computes 
the input information sample by sample which is very 
convenient for real time processing but its principal 
disadvantages are the need of calculating several 
multiplication and division operations and the wide range in 
the upper and lower bounds of the variables implied in the 
algorithm. 
  The implementation of these algorithms has been 
carried out traditionally with general-purpose DSP 
microprocessors using floating-point arithmetic. These 
implementations minimize round-off errors but tend to be 
limited in processing speed because they have usually 
available a single or a few processing units. In DSP 
microprocessors word-length implementation is defined by 
the hard-wired architecture but in reconfigurable computing 
the size of each variable may be customized in order to get 
the best trade-offs in numerical precision, speed, size and 
power consumption. It is shown that reconfigurable 
computing designs are capable of achieving up to 500 times 
speed up and 70% energy over microprocessor 
implementations for specific applications [3].  
 The most difficult task in translating an algorithm 
written in MATLAB, for a general-purpose processor or 
DSP microprocessor into an algorithm optimized for 
custom logic, is the floating-point to fixed-point conversion 
due to accuracy problems [4]. The problem of word-length 
optimization is NP-hard [5] and different approaches have 
been adopted and tools developed for its treatment [4][6]. 
These tools are very helpful in the solution searching space 
but automatic translation from them can not be applied in a 
blind manner because the results are not good enough when 
accuracy is critical, such as the case presented in this paper. 
For this reason the automatic translation to fixed-point 
arithmetic has been disregarded in favor of C for fixed-
point modeling.  

2. NOISE CANCELLATION 

The noise canceller under study has interesting 
characteristics for applications that demand speech 
enhancement techniques, some of them being mentioned 
next: No prior knowledge of the characteristics of the signal 

978-1-4244-1992-0/08/$25.00 © IEEE 13



2008 4th Southern Conference on Programmable Logic 

or noise is needed, it shows a very good behavior in highly 
non-stationary environments, preserves the quality of the 
speech, provides an immediate response, makes the further 
processing of the speech possible, and removes interfering 
sources arriving in similar conditions to both channels. No 
band suppression or artificial tone introduction was 
appreciated in direct hearings, the quality of the resulting 
speech being noticeable good. 

2.1. Filter structure 

The recording scheme is based on a two-microphone 
structure as shown in Fig.1. One for noisy speech (primary, 
x(n)) and the other the noise in itself (reference, ra(n)). The 
speech source is assumed to be well separated from the 
reference microphone to avoid crosstalk. The noise is 
estimated by a lattice filter (which is adapted by its 
estimation errors), its backward residuals being used to 
adapt the weights of a ladder filter in combination with the 
noise estimation generated. Clean speech is then obtained 
as the error output of the ladder filter. 

 
X 

                                                 x(n) 
 
 
 
 
 

 
                                        gm(n)          em(n) 

 
 
 

     ra(n) 
 
 

Fig. 1. General framework for noise removal 

2.2. Computational analysis 

The aspects which have more influence in the 
computational complexity of the algorithm are the sampling 
frequency (11025 Hz, enough for speech) and the number 
of stages of the lattice filter (14, required to support two 
microphones separated 20 cm), for these characteristics a 
cancellation average from 6 to 12 dB is obtained. The filter 
is recursive in the order of the lattice filter (m) and in time 
(n). The convergence rate of the algorithm is good and has a 
computational complexity of N. The stages for the 
calculation of the algorithm are three: initialization, lattice 
and ladder. 

 Variable initialization is shown in Table 1. The adaptive 
parameter α for samples and stages is set to one, and the 
adaptation step ω=0,9999. The initial values of the residual 
backward and forward errors for sample treatment are fixed 
to ε = 5.108, this value ensuring a high lock-up performance 
under acceptable stability conditions.  
 

Table 1. Variable initialization  
Adjust parameter αm (-1) = 1 
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 The lattice filter computation is the most expensive part 
of the noise removal algorithm, as show in Table 2. It 
begins with n = 0 and computes the updates for m = 0, 1, … 
N-2; with N = 14. The first step is to update the Parcor 
coefficient for the next stage and from it to calculate the 
reflection coefficients. The forward and backward errors, 
and the forward and backward residual errors are evaluated 
next. Finally, the adaptive parameter is estimated.  
  

Table 2. Lattice calculation 
Parcor coefficients  

km+1 (n) =  ω km+1 (n - 1) + αm (n - 1) fm (n) bm (n - 1)  (1) 
Reflection coefficients  
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 The ladder filter calculates the gain factor, estimates the 
noise and produces the clean signal as a final result (see 
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Table 3). It begins with n = 0 and computes the updates for 
m = 0, 1 … N-1; with N = 14. 
  

Table 3. Ladder calculation 
Gain factor aux.                             

dm(n) = ω dm(n – 1) + αm(n) bm(n) em(n) 
 

  (6) 

Gain factor              
(n)r
(n)d(n)g b

m

m
m −=  

 
(7) 

Estimate noise 
xe

m(n) = xe
m-1(n) + bm(n) gm(n) 

 
(8) 

Clean signal 
em+1(n + 1) = em(n + 1) + gm(n) bm(n + 1) 

 
 (9) 

 
 The algorithm demands 9 additions, 15 multiplications 
and 6 divisions per stage. The previous figures have to be 
multiplied by the number of stages to evaluate the number 
of operations required per sample. To have an idea of the 
computational cost in a real platform, we had implemented 
the algorithm in two different DSP microprocessors. The 
first implementation was done in a TSM320C1-50. The 
C31 is a 50 MHz, 32-bit floating point, with a 
computational pick power of 50 MFLOPS and 25 MIPS. 
These figures can be achieved executing two instructions in 
parallel in a 40 ns cycle basis. In this case, the algorithm 
demanded the 96% of the total available DSP 
computational power. The second implementation was done 
in a more modern and powerful microprocessor, the ADSP-
21261-150. The ADSP is a 32-40 bit floating point 
microprocessor which features an instruction cycle time of 
6,67 ns at 150 MHz. With its SIMS computational 
hardware it reaches 900 MFLOPS. The microprocessor 
overload was 5,65 in this case. The main reason for this 
costly computational load is due to the fact that both DSP 
microprocessors lack the division operation implemented in 
hardware, which is a common practice in most DSP 
microprocessors.  If the computational cost of the algorithm 
is an obvious disadvantage, it presents the advantage of the 
very small amount of memory required, because the 
processing of the speech samples can be done as soon as 
they become available, therefore only a small array for 
speech input data is needed instead of large buffers. 
 

3. WORD-LENGTH ESTIMATION 

The algorithm was coded in ANSI-C and tested with a set 
of commands in English and Spanish. The command set 
was recorded from 32 speakers of both sexes (equally 
distributed) in an age from 20 to 45. The records were 
acquired under strong environmental noisy conditions (95-
100 dB). The English command set being used was: 

double, down, eight, end, five, four, go, hit, jump, last, left, 
next, nine, no, off, on, right, seven, six, split, start, stop, 
ten, turn, two, up, yes and zero. The set of Spanish 
commands used was: aceptar, adelante, detrás,  cancelar, 
cero, cinco, cuatro, dos, enviar, establecer, fax, 
información, internet, marcar, mensaje, menú, nueve, 
ocho, recibir, repetir, seis, servicio, siete, teléfono, texto, 
tres, and uno.  
     The bounds for the worst case results in floating-point 
arithmetic are shown in Table 4. As the final 
implementation of the algorithm is to be carried out using 
reconfigurable logic by high level synthesis 
methodologies, the limitation of the synthesis tools in 
using integer data types must be specially taken into 
consideration, due to the implications in the algorithm 
computation accuracy [7]. 

 
Table 4. Upper and lower bounds of variables 

 
UPPER 
BOUND 

LOWER 
BOUND 

Reference 
channel sample 

ra(n)2 12.411.529,00 0,00
Initial residual 
forward and 

backward errors 
r0

f(n+1) = 
r0

b(n+1) 1.663.767.296,00 76.082.344,00
Parcor coefficient 

km+1(n) 1.318.524.032,00 -314.949.312,00
Reflection 

Coefficients 
Ψm+1

f(n) 
Ψm+1

b(n) 
0,56 
0,56 

-0,80
-0,80

Forward error 
fm+1(n) 2.497,71 -2.864,51

Backward error 
bm+1(n) 2.281,11 -2.788,99

Residual forward 
error rf

m+1(n) 728.626.176,00 76.068.048,00
Residual 

backward error   
rb

m+1(n) 728.131.264,00 76.067.752,00
Adaptive 

parameter αm+1(n) 1,00 0,96
Auxiliary variable 

for gain factor 
dm(n) 2.598.985.472,00 -144.405.008,00

Gain factor  gm(n) 0,43 -2,13
Estimate noise 

xem(n) 5.038,00 -5.142,00

Clean signal em(n) 5.414,00 -4.532,00
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 In Table 4 a large dispersion on variable bounds can be 
observed. The reflection coefficients, the adaptive 
parameter, and the gain factor take values below one and 
they can not be represented as integer numbers. On the 
other hand, the auxiliary variable to calculate the gain 
factor takes a value that exceeds the range of 
representation for integer numbers (-2.147.483.648, + 
2.147.483.647).  A first approximation to the problem was 
to work with integer numbers and to scale the conflictive 
variables. This was carried out heuristically by multiplying 
the variables with small values to make them significant 
and by dividing the variables close to the upper bound of 
the integer representation, undoing those changes later on. 
This approximation didn’t give good results mainly 
because to adjust the scale parameters was very difficult 
taking into consideration the recursive algorithm. A second 
approach was to work with floating-point arithmetic but 
considering the results as integer numbers. In this case, the 
upper bound didn’t present any problem; the problem 
resided in variables taking values below one. The most 
critical variable in this case is the adaptive parameter 
αm+1(n) due to its significance in the algorithm feedback 
adaptation. The evolution of these values for a typical case 
is shown in Table 5. It can be observed that the three more 
significant figures remain unchanged. And changes may be 
appreciated in the last significant figure from 10-4 to 10-6 

positions. Thus, to consider the influence of this last 
significant figure the adaptive parameter must be scaled by 
106 or 220 having in mind the hardware implementation of 
this scale factor. The reflection coefficients and the 
adaptation step were scaled in the same proportion than the 
adaptive parameter. The gain factor requires to be scaled 
by 104 or 214from the same analysis than in the case of the 
adaptive parameter.  

 
Table 5. Adaptive variable values evolution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Taking into consideration the values of the scale factor 
mentioned before, an exhaustive simulation study has been 
carried out in order to adjust the number of bits for each 
variable (NB). This factor has been adjusted according to 
the values of the lower and upper bounds obtained during 

the computation of the algorithm for all the commands 
enclosed in the proprietary data base mentioned before. 
The criterion to validate results consisted in estimating the 
errors between the clean signals obtained in floating point 
format considering them as integer numbers including the 
scaling factor. The clean waveform result has also been 
listened to subjectively evaluate the quality of command 
intelligibility. Table 6 summarizes the optimal word-length 
for each variable and its associated scale factor.  
 

Table 6. Final word-length adjust 

 NB Scale factor

ra(n)2 31 NO 

r0
f(n) = r0

b(n) 40 NO 

km+1(n) 39 NO 

Ψf
m(n) 21 * 2 ^ 20 

Ψb
m(n) 21 * 2 ^ 20 

fm+1(n) 16 NO 

bm+1(n) 16 NO 

rf
m+1(n) 38 NO 

rb
m+1(n) 38 NO 

αm(n) 22 * 2 ^ 20 

dm(n) 39 NO 

gm(n) 17 * 2 ^ 14 

xem(n) 16 NO 

em+1(n) 16 NO 
 
 To give an idea about the quality of results, the words 
down and eight corrupted by noise are shown in Figure 2a). 
The clean signal obtained after floating point computation 
is shown in Fig. 2b) and finally the clean signal obtained 
using the word-length and parameters from Table 3 are 
presented in Fig 2c). When comparing the clean trace 
obtained with float point arithmetic and with optimally 
adjusted word length it can be concluded that the results 
are interchangeable.  

 

… 
0,999682 
0,999785 
0,999738 
0,999726 
0,999715 
0,999578 
0,999575 
0,999666 
0,999560 
0,999708 
…… 

a) 
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Fig. 2. Results for floating point arithmetic and optimized 

word sizes 

4. IMPLEMENTATION RESULTS 

The algorithm description has been carried out in ANSI C 
and automatically translated into VHDL by means of the 
CATAPULT-C tool from Mentor Graphics [8]. Later on, 
the VHDL resulting code was synthesized by the Quartus II 
from Altera and ISE from Xilinx tools. The results 
presented next correspond to two word-length cases. The 
first case, considers a fixed 40 bit word-data format for all 
the variables implied in the algorithm because it is the 
longest data format needed after optimization. The second 
one uses the word-length adjusted ad hoc after optimization 
for each variable according to Table 6.  Table 7 shows the 
Altera results for the device EP2S15F484C3 from the 
Stratix family. Table 8 shows the Xilinx results for the 
device 4vsx25ff668 from Virtex II family. The first column 
of both tables indicates the parameter to evaluate: physical 
resources, frequency and power dissipation. The available 
amount of physical resources is indicated between 
parentheses. The results are indicated by the absolute total 
amount of physical resources used and its percentage from 
the total resources available in the device. The power 
estimation is obtained for an 80% of test coverage. Finally, 
the last column indicates the performance improvements in 
the word-length adjusted case.  
 The Altera results from Table 7 show that there is a 
reduction of the 37 % in the ALUTs, 41,5 % in registers 
and 32,3 in the bits of memory. But these reduction rates 
seem to imply a 68,7 % increment in the DSP blocks 

needed. The frequency increments a 5,1 %. And the 
significant number of a 30,8 % of reduction is achieved in 
the dynamic power. 
 

Table 7. Synthesis results for Altera 
Parameter 40 bits Optimal Gain 

ALUTs 
(12.480) 

10.846 
(87 %) 

6.831 
(55 %) 

 
+ 37 % 

Registers 
(14.410) 

7.670 
(53 %) 

4.487 
(31 %) 

 
+ 41,5 % 

Memory 
bits 

(419.328) 

 
10.240 

(2,44 %) 

 
6.928 

(1,65 %) 

 
 

+ 32,3 % 
DSP blocks 
 9 bits (96) 

32 
(33 %) 

54 
(56 %) 

 
- 68,7 % 

 Frequency 
Max 

114,8 
 MHz. 

120.7 
 MHz. 

 
+ 5,1 % 

Dynamical 
 Power 

201.71 
 mW 

139,62 
mW 

 
+  30,8 % 

Statical  
Power 

359,88 
 mW 

345,79  
mW 

 
+ 4 % 

b) 

c) 
 
   Concerning the results for Xilinx shown in Table 8,  a 
similar saving percentage is found for function generators, 
CLB slices and Dff, this being a 28,1 % for RAM blocks. 
The DSP blocks show the same tendency than the Altera 
case increasing a 100 %. Not significant differences for 
frequency and power dissipation were observed. 
 

Table 8. Synthesis results from Xilinx 
Parameter 40 bits Optimal Gain 

Function 
generators 
(20.480) 

 
7.640 

(37 %) 

 
4.846 
(24 %) 

 
 

+ 36,6 % 
CLB slices 
(10.240) 

3.937 
(38 %) 

2.529 
(25 %) 

 
+ 35,8 % 

Dff or 
latches 

(21.440) 

 
7.873 

(37 %) 

 
5.058 
(24 %) 

 
 

+ 35,8 % 
RAM 
blocks 
(128) 

 
32 

(25 %) 

 
23 

(18 %) 

 
 

+ 28,1 % 
DSP 

blocks 48 
bits (128) 

 
12 

(9 %) 

 
24 

(18 %) 

 
 

-  100 % 
Max 

Frequency 
91, 02 
MHz. 

91,30 
MHz. 

 
+ 0,3 % 

Dynamical 
Power 

160,48 
mW 

159,8 
mW 

 
+ 0,12 % 

Statical 
Power 

280,1 
 mW 

279,3 
    mW 

 
+ 0,28 % 

  
 The Altera and Xilinx results can’t be strictly compared 
because the FPGAs being used in the implementations have 
different characteristics and the synthesis, optimization and 
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mapping modules of the tools may not use the same 
strategies. Physical resource demand in the optimal case 
shows the same tendency for both tools, a reduction for the 
generation of combinational and memory parts and an 
increment in the number of DSP blocks. This increment is 
natural as the number of bits decreases because the tool can 
map functionality more easily to DSP units according to its 
number of bits, 9 for Altera and 48 for Xilinx. The 
maximum clock frequency and dynamical power show a 
better behaviour for Altera than for Xilinx. 

5. CONCLUSION 

A study on word-length optimization of a speech 
enhancement noise-cancelling filter has been presented. 
The optimization has been carried out taking a set of spoken 
commands from a data base as a reference. Initially, the 
upper and lower bounds of the variables implicated in the 
algorithm were determined in float point calculation. These 
initial results evidence that the most critical variable is the 
filter adaptation step αm(n). The procedure used in the case 
of this variable serves as a model to scale the rest of the 
variables. To properly optimize the length of each 
individual variable an exhaustive simulation with all the 
spoken commands has been carried out. When comparing 
the clean trace produced with float-point arithmetic using 
an optimally adjusted word length it can be concluded that 
the results are comparable. Finally, the longest data-format 
after optimization was implemented for all the variables and 
contrasted with the data format optimized for each one of 
them. The quality of the results shows a high dependency 

on the tools and implementation devices when design 
methodologies based on high level synthesis are used. 
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