14 research outputs found

    A model-based analysis of climate change vulnerability of Pinus pinea stands under multiobjective management in the Northern Plateau of Spain

    No full text
    Key message Climate change is likely to heavily affect the provision of goods and services of Mediterranean forests. Our results strongly point out the need to develop adaptive strategies to mitigate the impact of climate change in order to assure the maintenance of the stands aiming their multifunctionality, more than their monetary revenues. Context Climate change in the Mediterranean region may heavily affect the provision of forest goods and services. Thus, options for adaptive forest management should be proposed. Aims The aims of this study are to analyze the climate-related sensitivity of Pinus pinea forests in the Northern Plateau in Spain and to assess the vulnerability of multiobjective forest management to climate change by means of a simulation study, focusing on timber and cone production. Methods The forest model PICUS v1.41, integrating a module for P. pinea cone and nut production, was used to simulate P. pinea stands at six site types under three forest management regimes (focus on timber, cones, and combined objectives) and five climate scenarios (current climate, four climate scenarios combining increases in temperature by +1 and +4 °C and decreases in precipitation by −10 and −30 %). Results Combined timber + cones management generated always the highest incomes from timber and cones. With the exception of the most productive site types, the combined timber + cone management produced also more timber volume than the cone and timber managements. Provisioning of ecosystem services decreased at all sites under all climate change scenarios. At very dry sites simulated, forests suffered from dieback events. Conclusion Provisioning of ecosystem services decreased at all sites under all climate change scenarios analyzed and will be extremely limited on poor sites. Benefits and weaknesses of the assessment approach are discussed. © 2015, INRA and Springer-Verlag France

    Scaling issues in forest ecosystem management and how to address them with models

    Get PDF
    Scaling is widely recognized as a central issue in ecology. The associated cross-scale interactions and process transmutations make scaling (i.e. a change in spatial or temporal grain and extent) an important issue in understanding ecosystem structure and functioning. Moreover, current concepts of ecosystem stewardship, such as sustainability and resilience, are inherently scale-dependent. The importance of scale and scaling in the context of forest management is likely to further increase in the future because of the growing relevance of ecosystem services beyond timber production. As a result, a consideration of processes both below (e.g. leaf-level carbon uptake in the context of climate change mitigation) and above (e.g. managing for biodiversity conservation at the landscape scale) the traditional focus on the stand level is required in forest ecosystem management. Furthermore, climate change will affect a variety of ecosystem processes across scales, ranging from photosynthesis (tree organs) to disturbance regimes (landscape scale). Assessing potential climate change impacts on ecosystem services thus requires a multi-scale perspective. However, scaling issues have received comparatively little attention in the forest management community to date. Our objectives here are thus first, to synthesize scaling issues relevant to forest management and second, to elucidate ways of dealing with complex scaling problems by highlighting examples of how they can be addressed with ecosystem models. We have focused on three current management issues of particular importance in European forestry: (1) climate change mitigation through carbon sequestration, (2) multi-functional stand management for biodiversity and non-timber goods and services and (3) improving the resilience to natural disturbances. We conclude that taking into account the full spatiotemporal heterogeneity and dynamics of forest ecosystems in management decision-making is likely to make management more robust to increasing environmental and societal pressures. Models can aid this process through explicitly accounting for system dynamics and changing conditions, operationally addressing the complexity of cross-scale interactions and emerging properties. Our synthesis indicates that increased attention to scaling issues can help forest managers to integrate traditional management objectives with emerging concerns for ecosystem services and therefore deserves more attention in forestry

    Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems

    Get PDF
    This study compiles and summarizes the existing knowledge about observed and projected impacts of climate change on forests in Europe. Forests will have to adapt not only to changes in mean climate variables but also to increased variability with greater risk of extreme weather events, such as prolonged drought, storms and floods. Sensitivity, potential impacts, adaptive capacity, and vulnerability to climate change are reviewed for European forests. The most important potential impacts of climate change on forest goods and services are summarized for the Boreal, Temperate Oceanic, Temperate Continental, Mediterranean, and mountainous regions. Especially in northern and western Europe the increasing atmospheric CO2 content and warmer temperatures are expected to result in positive effects on forest growth and wood production, at least in the short–medium term. On the other hand, increasing drought and disturbance risks will cause adverse effects. These negative impacts are very likely to outweigh positive trends in southern and eastern Europe. From west to east, the drought risk increases. In the Mediterranean regions productivity is expected to decline due to strongly increased droughts and fire risks. Adaptive capacity consists of the inherent adaptive capacity of trees and forest ecosystems and of socio-economic factors determining the capability to implement planned adaptation. The adaptive capacity in the forest sector is relatively large in the Boreal and the Temperate Oceanic regions, more constrained by socio-economic factors in the Temperate Continental, and most limited in the Mediterranean region where large forest areas are only extensively managed or unmanaged. Potential impacts and risks are best studied and understood with respect to wood production. It is clear that all other goods and services provided by European forests will also be impacted by climate change, but much less knowledge is available to quantify these impacts. Understanding of adaptive capacity and regional vulnerability to climate change in European forests is not well developed and requires more focussed research efforts. An interdisciplinary research agenda integrated with monitoring networks and projection models is needed to provide information at all levels of decision making, from policy development to the management unit
    corecore