40 research outputs found

    Effects of drought stress on physiological and biochemical adaptation responses in young black locust Robinia pseudoacacia L. clones

    Get PDF
    Black locust Robinia pseudoacacia L. is a fast growing tree, used in forest establishment. It is an economically important tree for tool production, obtaining timber and fuel as well as an important constituent element for landscapes. Though the tree is abundant, information on genetics, physiology, biology, wood quality and adaptability to different ecological conditions is limited and fragmented. The aim of this research was to study physiological and biochemical adaptation by comparing two black locust Clones that showed different responses to drought. The two Clones were exposed to different water regimes: Medium Stress and High Stress (50 and 25 % of water supplied to control). Physiological and biochemical measurements were made. Stress affected negatively the growth of both Clones. The effect of different stress intensity (MS and HS treatments) was observed on stem shape. When re-watered the stem showed partial recovery. Net photosynthesis rate in drought period did not show marked difference between the Clones. After soil rehydration both Clones recovered photosynthesis level. The Clones 1 did not show differences in osmotic potential when comparing Control and MS or HS trees. The Clone 2 showed increased osmotic potential in relation to stress intensity. The maximum potential in Clone 2 was comparable to the values for Clone 1. Amino acids, especially proline, increased in drought. The soluble sugars increased during the stress period in the stems of Clone 2. The increased absence of osmolytes increase in Clone 1 could be due to the absence of adaptive mechanism. Alternatively, osmolytes concentration was already too high to be increased more by drought. Different osmotic potential and changes during drought can be related to the growth during tree life. Selection of Clones according to osmolyte index could to select better trees for different climate zones

    Generative propagation of Robinia x ambigua POIR. – Pink locust

    Get PDF
    The genus Robinia is a small group of about 10 species of trees and shrubs indigenous only to NorthAmerica. Two species are endemic to Mexico, one being confined to south-western part of the country, while the rest are endemic to the south-eastern part of USA. Of the most important species and varieties of genus Robinia, Robinia x ambigua Poir.(Robinia viscosa x R. pseudo-acacia)-pink locust can be considered as the most significant one for bee-forage and decorative planting. In this paper a generative propagation method is presented for pink locust

    Generative propagation of Robinia x ambigua POIR. – Pink locust

    Get PDF
    The genus Robinia is a small group of about 10 species of trees and shrubs indigenous only to NorthAmerica. Two species are endemicto Mexico, one being confined to south-western part of the country, while the rest are endemic to the south-eastern part of USA. Of the mostimportant species and varieties of genus Robinia, Robinia x ambigua Poir.(Robinia viscosa x R. pseudo-acacia)-pink locust can be considered asthe most significant one for bee-forage and decorative planting. In this paper a generative propagation method is presented for pink locust

    The potential impact of human visceral leishmaniasis vaccines on population incidence

    Get PDF
    Human visceral leishmaniasis (VL) vaccines are currently under development and there is a need to understand their potential impact on population wide VL incidence. We implement four characteristics from different human VL vaccine candidates into two published VL transmission model variants to estimate the potential impact of these vaccine characteristics on population-wide anthroponotic VL incidence on the Indian subcontinent (ISC). The vaccines that are simulated in this study 1) reduce the infectiousness of infected individuals towards sand flies, 2) reduce risk of developing symptoms after infection, 3) reduce the risk of developing post-kala-azar dermal leishmaniasis (PKDL), or 4) lead to the development of transient immunity. We also compare and combine a vaccine strategy with current interventions to identify their potential role in elimination of VL as a public health problem. We show that the first two simulated vaccine characteristics can greatly reduce VL incidence. For these vaccines, an approximate 60% vaccine efficacy would lead to achieving the ISC elimination target (<1 VL case per 10,000 population per year) within 10 years' time in a moderately endemic setting when vaccinating 100% of the population. Vaccinating VL cases to prevent the development of PKDL is a promising tool to sustain the low incidence elimination target after regular interventions are halted. Vaccines triggering the development of transient immunity protecting against infection lead to the biggest reduction in VL incidence, but booster doses are required to achieve perduring impact. Even though vaccines are not yet available for implementation, their development should be pursued as their potential impact on transmission can be substantial, both in decreasing incidence at the population level as well as in sustaining the ISC elimination target when other interventions are halted.Human visceral leishmaniasis (VL) vaccines are currently under development and there is a need to understand their potential impact on population wide VL incidence. We implement four characteristics from different human VL vaccine candidates into two published VL transmission model variants to estimate the potential impact of these vaccine characteristics on population-wide anthroponotic VL incidence on the Indian subcontinent (ISC). The vaccines that are simulated in this study 1) reduce the infectiousness of infected individuals towards sand flies, 2) reduce risk of developing symptoms after infection, 3) reduce the risk of developing post-kala-azar dermal leishmaniasis (PKDL), or 4) lead to the development of transient immunity. We also compare and combine a vaccine strategy with current interventions to identify their potential role in elimination of VL as a publi

    Overcoming roadblocks in the development of vaccines for leishmaniasis

    Get PDF
    INTRODUCTION: The leishmaniases represent a group of parasitic diseases caused by infection with one of several species of Leishmania parasites. Disease presentation varies because of differences in parasite and host genetics and may be influenced by additional factors such as host nutritional status or co-infection. Studies in experimental models of Leishmania infection, vaccination of companion animals and human epidemiological data suggest that many forms of leishmaniasis could be prevented by vaccination, but no vaccines are currently available for human use. AREAS COVERED: We describe some of the existing roadblocks to the development and implementation of an effective leishmaniasis vaccine, based on a review of recent literature found on PubMed, BioRxiv and MedRxiv. In addition to discussing scientific unknowns that hinder vaccine candidate identification and selection, we explore gaps in knowledge regarding the commercial and public health value propositions underpinning vaccine development and provide a route map for future research and advocacy. EXPERT OPINION: Despite significant progress, leishmaniasis vaccine development remains hindered by significant gaps in understanding that span the vaccine development pipeline. Increased coordination and adoption of a more holistic view to vaccine development will be required to ensure more rapid progress in the years ahead

    Estimating the global demand curve for a leishmaniasis vaccine: A generalisable approach based on global burden of disease estimates.

    No full text
    BackgroundA pressing need exists to develop vaccines for neglected diseases, including leishmaniasis. However, the development of new vaccines is dependent on their value to two key players-vaccine developers and manufacturers who need to have confidence in the global demand in order to commit to research and production; and governments (or other international funders) who need to signal demand based on the potential public health benefits of the vaccine in their local context, as well as its affordability. A detailed global epidemiological analysis is rarely available before a vaccine enters a market due to lack of resources as well as insufficient global data necessary for such an analysis. Our study seeks to bridge this information gap by providing a generalisable approach to estimating the commercial and public health value of a vaccine in development relying primarily on publicly available Global Burden of Disease (GBD) data. This simplified approach is easily replicable and can be used to guide discussions and investments into vaccines and other health technologies where evidence constraints exist. The approach is demonstrated through the estimation of the demand curve for a future leishmaniasis vaccine.Methodology/principal findingsWe project the ability to pay over the period 2030-2040 for a vaccine preventing cutaneous and visceral leishmaniasis (CL / VL), using an illustrative set of countries which account for most of the global disease burden. First, based on previous work on vaccine demand projections in these countries and CL / VL GBD-reported incidence rates, we project the potential long-term impact of the vaccine on disability-adjusted life years (DALYs) averted as a result of reduced incidence. Then, we apply an economic framework to our estimates to determine vaccine affordability based on the abilities to pay of governments and global funders, leading to estimates of the demand and market size. Based on our estimates, the maximum ability-to-pay of a leishmaniasis vaccine (per course, including delivery costs), given the current estimates of incidence and population at risk, is higher than 5for25305 for 25-30% of the countries considered, with the average value-based maximum price, weighted by quantity demanded, being 5.7-6 [0.30.3 - 34.5], and total demand of over 560 million courses.Conclusion/significanceOur results demonstrate that both the quantity of vaccines estimated to be required by the countries considered as well as their ability-to-pay could make a vaccine for leishmaniasis commercially attractive to potential manufacturers. The methodology used can be equally applied to other technology developments targeting health in developing countries

    Human leishmaniasis vaccines : Use cases, target population and potential global demand

    Get PDF
    The development of vaccines against one or all forms of human leishmaniasis remains hampered by a paucity of investment, at least in part resulting from the lack of well-evidenced and agreed estimates of vaccine demand. Starting from the definition of 4 main use cases (prevention of visceral leishmaniasis, prevention of cutaneous leishmaniasis, prevention of post-kala-azar dermal leishmaniasis and treatment of post-kala-azar dermal leishmaniasis), we have estimated the size of each target population, focusing on those endemic countries where incidence levels are sufficiently high to justify decisions to adopt a vaccine. We assumed a dual vaccine delivery strategy, including a wide age-range catch-up campaign before the start of routine immunisation. Vaccine characteristics and delivery parameters reflective of a target product profile and the likely duration of the clinical development effort were considered in forecasting the demand for each of the four indications. Over a period of 10 years, this demand is forecasted to range from 300-830 million doses for a vaccine preventing visceral leishmaniasis and 557-1400 million doses for a vaccine preventing cutaneous leishmaniasis under the different scenarios we simulated. In a scenario with an effective prophylactic visceral leishmaniasis vaccine, demand for use to prevent or treat post-kala-azar dermal leishmaniasis would be more limited (over the 10 years ~160,000 doses for prevention and ~7,000 doses for treatment). Demand would rise to exceed 330,000 doses, however, in the absence of an effective vaccine for visceral leishmaniasis. Because of the sizeable demand and potential for public health impact, a single-indication prophylactic vaccine for visceral or cutaneous leishmaniasis, and even more so a cross-protective prophylactic vaccine could attract the interest of commercial developers. Continuous refinement of these first-of-their kind estimates and confirmation of country willingness and ability to pay will be paramount to inform the decisions of policy makers and developers in relation to a leishmaniasis vaccine. Positive decisions can provide a much-needed contribution towards the achievement of global leishmaniasis control
    corecore