103 research outputs found

    Field theory of the inverse cascade in two-dimensional turbulence

    Full text link
    A two-dimensional fluid, stirred at high wavenumbers and damped by both viscosity and linear friction, is modeled by a statistical field theory. The fluid's long-distance behavior is studied using renormalization-group (RG) methods, as begun by Forster, Nelson, and Stephen [Phys. Rev. A 16, 732 (1977)]. With friction, which dissipates energy at low wavenumbers, one expects a stationary inverse energy cascade for strong enough stirring. While such developed turbulence is beyond the quantitative reach of perturbation theory, a combination of exact and perturbative results suggests a coherent picture of the inverse cascade. The zero-friction fluctuation-dissipation theorem (FDT) is derived from a generalized time-reversal symmetry and implies zero anomalous dimension for the velocity even when friction is present. Thus the Kolmogorov scaling of the inverse cascade cannot be explained by any RG fixed point. The beta function for the dimensionless coupling ghat is computed through two loops; the ghat^3 term is positive, as already known, but the ghat^5 term is negative. An ideal cascade requires a linear beta function for large ghat, consistent with a Pad\'e approximant to the Borel transform. The conjecture that the Kolmogorov spectrum arises from an RG flow through large ghat is compatible with other results, but the accurate k^{-5/3} scaling is not explained and the Kolmogorov constant is not estimated. The lack of scale invariance should produce intermittency in high-order structure functions, as observed in some but not all numerical simulations of the inverse cascade. When analogous RG methods are applied to the one-dimensional Burgers equation using an FDT-preserving dimensional continuation, equipartition is obtained instead of a cascade--in agreement with simulations.Comment: 16 pages, 3 figures, REVTeX 4. Material added on energy flux, intermittency, and comparison with Burgers equatio

    Closure of two dimensional turbulence: the role of pressure gradients

    Full text link
    Inverse energy cascade regime of two dimensional turbulence is investigated by means of high resolution numerical simulations. Numerical computations of conditional averages of transverse pressure gradient increments are found to be compatible with a recently proposed self-consistent Gaussian model. An analogous low order closure model for the longitudinal pressure gradient is proposed and its validity is numerically examined. In this case numerical evidence for the presence of higher order terms in the closure is found. The fundamental role of conditional statistics between longitudinal and transverse components is highlighted.Comment: 4 pages, 2 figures, in press on PR

    Forcing-dependent dynamics and emergence of helicity in rotating turbulence

    Get PDF
    The effects of large-scale mechanical forcing on the dynamics of rotating turbulent flows are studied by means of direct numerical simulations, systematically varying the nature of the mechanical force in time. We find that the statistically stationary solutions of these flows depend on the nature of the forcing mechanism. Rapidly enough rotating flows with a forcing that has a persistent direction relative to the axis of rotation bifurcate from a non-helical state to a helical state despite the fact that the forcing is non-helical. We demonstrate that the nature of the mechanical force in time and the emergence of helicity have direct implications for the cascade dynamics of these flows, determining the anisotropy in the flow, the energy condensation at large scales and the power-law energy spectra that are consistent with previous findings and phenomenologies under strong and weak turbulence

    Subtropical mode water variability in a climatologically forced model in the northwestern Pacific Ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 126–140, doi:10.1175/2011JPO4513.1.A climatologically forced high-resolution model is used to examine variability of subtropical mode water (STMW) in the northwestern Pacific Ocean. Despite the use of annually repeating atmospheric forcing, significant interannual to decadal variability is evident in the volume, temperature, and age of STMW formed in the region. This long time-scale variability is intrinsic to the ocean. The formation and characteristics of STMW are comparable to those observed in nature. STMW is found to be cooler, denser, and shallower in the east than in the west, but time variations in these properties are generally correlated across the full water mass. Formation is found to occur south of the Kuroshio Extension, and after formation STMW is advected westward, as shown by the transport streamfunction. The ideal age and chlorofluorocarbon tracers are used to analyze the life cycle of STMW. Over the full model run, the average age of STMW is found to be 4.1 yr, but there is strong geographical variation in this, from an average age of 3.0 yr in the east to 4.9 yr in the west. This is further evidence that STMW is formed in the east and travels to the west. This is qualitatively confirmed through simulated dye experiments known as transit-time distributions. Changes in STMW formation are correlated with a large meander in the path of the Kuroshio south of Japan. In the model, the large meander inhibits STMW formation just south of Japan, but the export of water with low potential vorticity leads to formation of STMW in the east and an overall increase in volume. This is correlated with an increase in the outcrop area of STMW. Mixed layer depth, on the other hand, is found to be uncorrelated with the volume of STMW.E.M.D. acknowledges support of the Doherty Foundation and National Science Foundation (OCE-0849808). S.R.J was sponsored by the National Science Foundation (OCE-0849808). Participation of S.P. and F.B. was supported by the National Science Foundation by its sponsorship of the National Center for Atmospheric Research.2012-07-0

    Eddy‐driven sediment transport in the Argentine Basin: Is the height of the Zapiola Rise hydrodynamically controlled?

    Get PDF
    In this study, we address the question whether eddy‐driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years, with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy‐driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise

    Vorticity statistics in the two-dimensional enstrophy cascade

    Get PDF
    We report the first extensive experimental observation of the two-dimensional enstrophy cascade, along with the determination of the high order vorticity statistics. The energy spectra we obtain are remarkably close to the Kraichnan Batchelor expectation. The distributions of the vorticity increments, in the inertial range, deviate only little from gaussianity and the corresponding structure functions exponents are indistinguishable from zero. It is thus shown that there is no sizeable small scale intermittency in the enstrophy cascade, in agreement with recent theoretical analyses.Comment: 5 pages, 7 Figure
    corecore