927 research outputs found

    Keratin Isotypes Control Desmosome Stability and Dynamics through PKCα

    Get PDF
    Expression and interaction of desmosomal components and keratins provide stable cell cohesion and protect the epidermis against various types of stress. The differentiation-specific isotype composition of the keratin cytoskeleton and desmosomes is regarded as a major determinant of adhesive strength. In support, wound healing is characterized by a transient decrease in desmosomal adhesion accompanied by increased expression of keratins K6/K16/K17 at the expense of K1/K10. The significance of altered keratin expression for desmosomal composition and adhesion remains incompletely understood at a mechanistic and functional level. Here, we investigated the respective contribution of K5/K14 or K6/K17 to desmosome adhesion, on their stable re-expression in keratinocytes lacking all keratins. This revealed that K5/K14 filaments support stable desmosomes, whereas “wound healing” keratins K6/K17 induce elevated protein kinase C alpha–mediated desmosome disassembly and subsequent destabilization of epithelial sheets. Moreover, our data suggest that K5/K14 sequester protein kinase C alpha in the cytoplasm, whereas K6/K17 or the absence of all keratins enables protein kinase C alpha translocation to the plasma membrane and induction of desmosome disassembly. Gain- and loss-of-function experiments support a major role of K5 in desmosome stability control via protein kinase C alpha. Our data show that keratin isotypes differently and specifically regulate wound healing and invasion by modulating intercellular adhesion

    Skin-Specific Expression of ank-393, a Novel Ankyrin-3 Splice Variant

    Get PDF
    Ankyrins represent a protein family whose members are associated with membrane proteins and the actin cytoskeleton. The principal ankyrin domain structure comprises an amino-terminal membrane-binding, a spectrin-binding, and a regulatory domain, and can be modulated by alternative splicing. In order to investigate the role of ankyrin-3 in skin, we have isolated three complete ankyrin-3 cDNA clones of 5.8 kb, 5.2 kb, and 2.5 kb by reverse transcription–polymerase chain reaction of mouse skin RNA. DNA sequencing confirmed the isolated clones to be splice variants of ankyrin-3. Of these, the smallest cDNA represents a novel ankyrin named ankyrin-393. Surprisingly, this novel ankyrin subtype lacks not only all ankyrin repeats, but also the first 75 amino acids of the spectrin-binding domain. Immuno-fluorescence analysis of mouse skin showed that ankyrin-3 is expressed in all living layers of mouse epidermis. Here, it predominates along the basal and lateral membranes of the basal layer in addition to an even cytoplasmic distribution. In primary mouse keratinocytes grown at elevated Ca2+ levels, ankyrin-393 was localized along the plasma membrane and throughout the cell in a Golgi-like fashion. Depending on fixation conditions, nuclear staining became apparent in many cells. In agreement with previous data, northern blotting revealed a widespread distribution of the two larger ankyrin splice variants. In contrast, the mRNA coding for ankyrin-393 was restricted to mouse skin. Reverse transcription–polymerase chain reaction of mouse skin RNA strongly suggested additional ankyrin isoforms in skin. Our data on ankyrin-393, which lacks a part of the spectrin-binding domain that regulates the affinity to spectrin, suggests a new function for this member of the ankyrin family

    Multiphase PC/PL Relations: Comparison between Theory and observations

    Full text link
    Cepheids are fundamental objects astrophysically in that they hold the key to a CMB independent estimate of Hubble's constant. A number of researchers have pointed out the possibilities of breaking degeneracies between Omega_Matter and H0 if there is a CMB independent distance scale accurate to a few percent (Hu 2005). Current uncertainties in the distance scale are about 10% but future observations, with, for example, the JWST, will be capable of estimating H0 to within a few percent. A crucial step in this process is the Cepheid PL relation. Recent evidence has emerged that the PL relation, at least in optical bands, is nonlinear and that neglect of such a nonlinearity can lead to errors in estimating H0 of up to 2 percent. Hence it is important to critically examine this possible nonlinearity both observationally and theoretically. Existing PC/PL relations rely exclusively on evaluating these relations at mean light. However, since such relations are the average of relations at different phases. Here we report on recent attempts to compare theory and observation in the multiphase PC/PL planes. We construct state of the art Cepheid pulsations models appropriate for the LMC/Galaxy and compare the resulting PC/PL relations as a function of phase with observations. For the LMC, the (V-I) period-color relation at minimum light can have quite a narrow dispersion (0.2-0.3 mags) and thus could be useful in placing constraints on models. At longer periods, the models predict significantly redder (by about 0.2-0.3 mags) V-I colors. We discuss possible reasons for this and also compare PL relations at various phases of pulsation and find clear evidence in both theory and observations for a nonlinear PL relation.Comment: 5 pages, 8 figures, proceeding for "Stellar Pulsation: Challenges for Theory and Observation", Santa Fe 200

    Impact of Manganese and Chromate on Specific DNA Double-Strand Break Repair Pathways

    Get PDF
    Manganese is an essential trace element; nevertheless, on conditions of overload, it becomes toxic, with neurotoxicity being the main concern. Chromate is a well-known human carcinogen. The underlying mechanisms seem to be oxidative stress as well as direct DNA damage in the case of chromate, but also interactions with DNA repair systems in both cases. However, the impact of manganese and chromate on DNA double-strand break (DSB) repair pathways is largely unknown. In the present study, we examined the induction of DSB as well as the effect on specific DNA DSB repair mechanisms, namely homologous recombination (HR), non-homologous end joining (NHEJ), single strand annealing (SSA), and microhomology-mediated end joining (MMEJ). We applied DSB repair pathway-specific reporter cell lines, pulsed field gel electrophoresis as well as gene expression analysis, and investigated the binding of specific DNA repair proteins via immunoflourescence. While manganese did not seem to induce DNA DSB and had no impact on NHEJ and MMEJ, HR and SSA were inhibited. In the case of chromate, the induction of DSB was further supported. Regarding DSB repair, no inhibition was seen in the case of NHEJ and SSA, but HR was diminished and MMEJ was activated in a pronounced manner. The results indicate a specific inhibition of error-free HR by manganese and chromate, with a shift towards error-prone DSB repair mechanisms in both cases. These observations suggest the induction of genomic instability and may explain the microsatellite instability involved in chromate-induced carcinogenicity

    Платежная система Pay Pal

    Get PDF
    The article is devoted to the payment system Pay Pal. The problem of this article is to describe the history of the payment system and the status of the Bank. The article talks about creating Pay Pal and the services of the system. many people use this system and remain davolno

    Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia

    Get PDF
    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function

    A kinetic BGK edge-based scheme including vibrational and electronic energy modes for high-Mach flows

    Get PDF
    A first principles formulation for the calorically imperfect behavior of gases is here proposed within a Boltzmann-type discretisation of the Navier–Stokes equations. The formulation is intended to enhance the consistency of gas kinetic schemes (GKS) with the physics of supersonic and hypersonic regimes where vibrational and electronic energy modes are activated before any thermal nonequilibrium or chemical activity takes place. The so-called node-pair BGK scheme, an edge-based implementation of the GKS, is considered in the present work for the implementation of a thermodynamic model where the calorically imperfect behavior is obtained from a modification of the way the different moments of the particle distribution function are computed and eventually used to determine the fluxes of conserved quantities across the boundary of each control volume. The method is validated on a series of canonical test cases for supersonic and hypersonic flows

    Keratins Stabilize Hemidesmosomes through Regulation of β4-Integrin Turnover

    Get PDF
    Epidermal integrity and wound healing depend on remodeling of cell-matrix contacts including hemidesmosomes. Mutations in β4-integrin and plectin lead to severe epidermolysis bullosa (EB). Whether mutations in keratins K5 or K14, which cause EB simplex, also compromise cell-matrix adhesion through altering hemidesmosomal components is not well investigated. In particular, the dependence of β4-integrin endocytosis and turnover on keratins remains incompletely understood. Here, we show that the absence of keratins causes loss of plectin-β4-integrin interaction and elevated β4-integrin phosphorylation at Ser1354 and Ser1362. This triggered a caveolin-dependent endocytosis of β4-integrin but not of other integrins through Rab5 and Rab11 compartments in keratinocytes. Expressing a phospho–deficient β4-integrin mutant reduces β4-integrin endocytosis and rescues plectin localization in keratin–free cells. β4-integrin phosphorylation in the absence of keratins resulted from elevated Erk1/2 activity downstream of increased EGFR and PKCα signaling. Further, increased Erk1/2 phosphorylation and altered plectin localization occur in keratin–deficient mouse epidermis in vivo. Strikingly, expression of the K14-R125P EBS mutant also resulted in plectin mislocalization and elevated β4-integrin turnover, suggesting disease relevance. Our data underscore a major role of keratins in controlling β4-integrin endocytosis involving a plectin-Erk1/2-dependent mechanism relevant for epidermal differentiation and pathogenesis
    corecore