201 research outputs found
Functional modes of proteins are among the most robust ones
It is shown that a small subset of modes which are likely to be involved in
protein functional motions of large amplitude can be determined by retaining
the most robust normal modes obtained using different protein models. This
result should prove helpful in the context of several applications proposed
recently, like for solving difficult molecular replacement problems or for
fitting atomic structures into low-resolution electron density maps. Moreover,
it may also pave the way for the development of methods allowing to predict
such motions accurately.Comment: 4 pages, 5 figure
Glassy Dynamics of Protein Folding
A coarse grained model of a random polypeptide chain, with only discrete
torsional degrees of freedom and Hookean springs connecting pairs of
hydrophobic residues is shown to display stretched exponential relaxation under
Metropolis dynamics at low temperatures with the exponent , in
agreement with the best experimental results. The time dependent correlation
functions for fluctuations about the native state, computed in the Gaussian
approximation for real proteins, have also been found to have the same
functional form. Our results indicate that the energy landscape exhibits
universal features over a very large range of energies and is relatively
independent of the specific dynamics.Comment: RevTeX, 4 pages, multicolumn, including 5 figures; larger
computations performed, error bars improve
Nonlinearity of Mechanochemical Motions in Motor Proteins
The assumption of linear response of protein molecules to thermal noise or
structural perturbations, such as ligand binding or detachment, is broadly used
in the studies of protein dynamics. Conformational motions in proteins are
traditionally analyzed in terms of normal modes and experimental data on
thermal fluctuations in such macromolecules is also usually interpreted in
terms of the excitation of normal modes. We have chosen two important protein
motors - myosin V and kinesin KIF1A - and performed numerical investigations of
their conformational relaxation properties within the coarse-grained elastic
network approximation. We have found that the linearity assumption is deficient
for ligand-induced conformational motions and can even be violated for
characteristic thermal fluctuations. The deficiency is particularly pronounced
in KIF1A where the normal mode description fails completely in describing
functional mechanochemical motions. These results indicate that important
assumptions of the theory of protein dynamics may need to be reconsidered.
Neither a single normal mode, nor a superposition of such modes yield an
approximation of strongly nonlinear dynamics.Comment: 10 pages, 6 figure
On the origin of the Boson peak in globular proteins
We study the Boson Peak phenomenology experimentally observed in globular
proteins by means of elastic network models. These models are suitable for an
analytic treatment in the framework of Euclidean Random Matrix theory, whose
predictions can be numerically tested on real proteins structures. We find that
the emergence of the Boson Peak is strictly related to an intrinsic mechanical
instability of the protein, in close similarity to what is thought to happen in
glasses. The biological implications of this conclusion are also discussed by
focusing on a representative case study.Comment: Proceedings of the X International Workshop on Disordered Systems,
Molveno (2006
Universal behavior of localization of residue fluctuations in globular proteins
Localization properties of residue fluctuations in globular proteins are
studied theoretically by using the Gaussian network model. Participation ratio
for each residue fluctuation mode is calculated. It is found that the
relationship between participation ratio and frequency is similar for all
globular proteins, indicating a universal behavior in spite of their different
size, shape, and architecture.Comment: 4 pages, 3 figures. To appear in Phys. Rev.
The ves hypothesis and protein misfolding
Proteins function by changing conformation. These conformational changes, which involve the concerted motion of a large number of atoms are classical events but, in many cases, the triggers are quantum mechani-
cal events such as chemical reactions. Here the initial quantum states after
the chemical reaction are assumed to be vibrational excited states, something
that has been designated as the VES hypothesis. While the dynamics under
classical force fields fail to explain the relatively lower structural stability of
the proteins associated with misfolding diseases, the application of the VES hy-
pothesis to two cases can provide a new explanation for this phenomenon. This explanation relies on the transfer of vibrational energy from water molecules to proteins, a process whose viability is also examined
The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein
The folding pathway and rate coefficients of the folding of a knotted protein
are calculated for a potential energy function with minimal energetic
frustration. A kinetic transition network is constructed using the discrete
path sampling approach, and the resulting potential energy surface is
visualized by constructing disconnectivity graphs. Owing to topological
constraints, the low-lying portion of the landscape consists of three distinct
regions, corresponding to the native knotted state and to configurations where
either the N- or C-terminus is not yet folded into the knot. The fastest
folding pathways from denatured states exhibit early formation of the
N-terminus portion of the knot and a rate-determining step where the C-terminus
is incorporated. The low-lying minima with the N-terminus knotted and the
C-terminus free therefore constitute an off-pathway intermediate for this
model. The insertion of both the N- and C-termini into the knot occur late in
the folding process, creating large energy barriers that are the rate limiting
steps in the folding process. When compared to other protein folding proteins
of a similar length, this system folds over six orders of magnitude more
slowly.Comment: 19 page
- …