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Abstract. Proteins function by changing conformation. These conforma-
tional changes, which involve the concerted motion of a large number of atoms
are classical events but, in many cases, the triggers are quantum mechani-
cal events such as chemical reactions. Here the initial quantum states after
the chemical reaction are assumed to be vibrational excited states, something
that has been designated as the VES hypothesis. While the dynamics under
classical force fields fail to explain the relatively lower structural stability of
the proteins associated with misfolding diseases, the application of the VES hy-
pothesis to two cases can provide a new explanation for this phenomenon. This
explanation relies on the transfer of vibrational energy from water molecules
to proteins, a process whose viability is also examined.

1. Introduction. Proteins are the macromolecules of life since they mediate most
of the processes that take place inside a living cell. In many cases their function is
related to conformational changes which are concerted movements of large numbers
of atoms, from a few hundreds to tens or even hundreds of thousands [17, 1, 3].
Although the initial and final structures of the proteins are sometimes known, the
sequential chain of events that takes a protein from the initial conformation to
the final conformation is largely unknown. Since these conformational changes
involve the movement of protein domains with a large number of atoms they can be
considered as classical events and have consequently been modelled with classical
molecular dynamics (MD) potentials [27, 6]. Two approaches that have been applied
are Normal Mode Analysis (NMA) [36] and Principal or Essential Dynamics (ES)
[25], both of which are linearized schemes that neglect the nonlinear character of
atom-atom interactions in proteins. Furthermore, although NMA and ES have
identified modes that can be related to some observed conformational changes, it
has not yet been possible to define initial conditions which, together with the atom-
atom interactions, lead to those conformational changes and the only successful
manner to go from an initial protein conformation to a final one, in a computer
simulation, has so far been through Steered or Targeted Molecular Dynamics, in
which artificial forces are added to drive the protein to a specific final conformation
[33].

The classical MD simulations of protein conformational changes also tend to ne-
glect the fact that the initial trigger is a delivery of energy to a small region of the
protein - the active site. In many cases this trigger is a quantum mechanical event,
namely, the chemical reactions of hydrolysis of Adenosinetriphosphate (ATP) or of
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Guanosidetriphosphate (GTP). Thus, to understand how a conformational change
takes place we must know how the energy released by the chemical reaction even-
tually leads to the large scale domain motion that constitutes the conformational
change, that is, we must know how the initial quantum state that is the immediate
outcome of the chemical reaction eventually leads to the classical event constituted
by the concerted motion of a large group of atoms. Here we concentrate on the
initial quantum event and our main hypothesis is that the initial quantum state is
a vibrational excited state of the peptide group, something that, in previous stud-
ies [7, 9], has been designated as the VES hypothesis. Although this designation
was first used in 2005, the possibility that vibrational excited states have a role
in protein function has a much longer history and was first proposed in 1973, by
McClare, in the context of a “crisis in bioenergetics” [23]. McClare’s idea was taken
up by Davydov [12] who was interested in the conformational changes responsi-
ble for muscle contraction that are triggered by the hydrolysis of ATP. Davydov’s
assumption was that the energy released in the chemical reaction is stored in a
well-known quantum mode of the peptide group, the amide I mode, which consists
essentially of the stretching of the C=O bond [20]. In the Davydov/Scott model
the interaction of the amide I mode with the vibrations of the associated hydrogen
bonds leads to a self-trapped state known in the literature as the Davydov soliton
[12, 34]. This is the state that arises at low temperatures. At high temperatures the
Davydov soliton is not stable but computer simulations have shown [10, 11] that
the amide I states are still localized (even more so than the Davydov soliton), not
because of self-trapping, but because of static and dynamic irregularities (Ander-
son localization [2]). These numerical results have been confirmed by experimental
measurements in the organic crystal of acetanilide (ACN) [14].

The classical descriptions of protein dynamics and of protein conformational
changes are also unable to provide explanations for the cases in which the latter
processes lead to non-native structures and protein aggregation, as happens in the
so-called amyloid or misfolding diseases [13]. Two examples of misfolding diseases
are prion diseases [29, 30, 32] and Huntington’s [28, 21]. Prions are the proteins
associated with scrapie in sheep, with bovine spongiform encephalopathy in cows
and with variant-Creutzfeldt-Jakob disease in humans [29, 30, 32], all of which are
neurologic disorders that lead to nervous system degeneracy. It is known that prions
can fold into a native, fully functioning state, designated by [PrPC], and without
suffering any amino acid mutations and in the same thermodynamic conditions,
they may also acquire another, pathogenic conformation, named [PrPSc], which has
a greater percentage of β-sheet in its secondary structure [31]. One particularity
of the misfolded form, [PrPSc], is that it seems to be able to induce misfolding in
correctly folded proteins [29, 30, 32]. In spite of many studies, the causes of these
harmful conformational changes remain unknown. Similarly, Huntington’s disease,
another neurodegenerative disease, continues to baffle researchers. Although it is
now known that the primary cause is an expansion of stretches of the amino acid
glutamine (GLN) in the huntingtin protein [28, 21], the structure of this protein is
not yet fully resolved and the causes for protein aggregation remain obscure.

In section 3, it is demonstrated how the VES hypothesis can provide a general
explanation for the structural instability of the proteins associated with misfolding
diseases. This explanation makes use of the fact that the amide I energy of the
peptide groups is approximately the same as the energy of the bending mode of
water molecules where the latter consists of the angle bending, with respect to each
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other, of the two O-H bonds in the same water molecule. Indeed, while the amide
I energy is approximately 1660 cm−1 [20], the energy of the bending mode of water
is approximately 1640 cm−1 [35]. The consequence of the resonance between these
two vibrational modes is that a bending mode excitation in a water molecule that
is close to a peptide group of a protein can jump to this peptide group, taking the
form of an amide I excitation, and vice-versa, i.e., the amide I mode and the bending
mode excitations can mix, something that has been observed experimentally [35].
The calculations presented in section 3 show that the mixing between the amide I
and the bending mode can lead to an enhanced transfer of energy from the water
to the proteins associated with misfolding diseases and thus explain their greater
structural instability compared to other proteins.

The paper is organized as follows: in the next section the Davydov/Scott Hamil-
tonian, generalized in order to take into account the full atomic structure of a
protein, is introduced and the equations of motion are derived; in section 3 two
applications of the VES hypothesis to protein misfolding are presented and further
arguments for the viability of this hypothesis are put forward; finally, the article
ends with a discussion of the relation of the results presented to a possible cause of
the harmful protein conformational changes in neurodegenerative disorders.

2. Theory. The phenomenon to be considered here is the propagation of a quan-
tum of vibrational excitation in a protein-water system. The vibrational excited
state may be an amide I vibration when the excitation is in a peptide group or a
quantum of bending mode when the excitation is in a water molecule. To describe
the propagation of these excitations, a generalized version of the Davydov/Scott
Hamiltonian [12, 34] is used that has three terms, as in the original studies:

Ĥ = Ĥex +Hat + Ĥint (1)

where Ĥex, the quantum excitation Hamiltonian, describes the storage and transfer
of vibrational excitations (either amide I or bending mode) among their respective
sites (which for amide I modes are the C=O groups of amino acids and for the
bending mode are the water molecules); Hat, the atomic Hamiltonian, describes

the motions of all the atoms in the protein and Ĥint, the interaction Hamiltonian,
describes the interaction of the quantum amide I excitation in a given C=O group
with the deviation, from its equilibrium length, of the hydrogen bond connected to
it, when such a bond exists (the definition of this hydrogen bond is specified in the
two paragraphs after eqn(5)).

The Hamiltonian (1) constitutes a generalization of the original Davydov/Scott
Hamiltonian for the reasons detailed below. The quantum excitation Hamiltonian,
Ĥex, is given by:

Ĥex =
N
∑

n=1

(εn + ξn) â
†
nân +

N
∑

n<m=1

[

Vnm

(

â†nâm + â†mân
)]

(2)

where â†n(ân) are the creation(annihilation) operators for an amide I excitation or
a bending mode of water at site n, N is the total number of amide and bending
mode sites where a vibrational excitation can be found and εn = 1660 cm−1 when n
stands for a C=O group and εn = 1640 cm−1 when n stands for a water molecule.
A first generalization with respect to the original Davydov/Scott Hamiltonian is
the term in ξn, where ξn is a random variable with a Gaussian distribution centred
on zero and with a standard deviation of 10 cm−1. This term was added to take
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into account the effect of the different local environments in which the amide I or
the bending mode excitations can find themselves in.

The first term in (2) includes the operator for the number of excitations in each
site, â†nân, which, in this study, will be one. The second term in (2) describes
the transfer of the excitations from amide site n to amide site m, which is the
more probable the greater the magnitude of the dipole-dipole interaction between
the sites, Vnm. A second generalization with respect to the original Davydov/Scott
Hamiltonian is that the excitation Hamiltonian (2) goes beyond the nearest neighbor
approximation used in most applications [12, 34, 11] and considers the dipole-dipole
interactions between all N excitation sites, as has also been done with the discrete
self-trapping equation for the crystal of ACN [15] and for the excitations in a glob-
ular protein [16]. The dipole-dipole interaction can be found in any textbook on
electromagnetism, for instance [19], and has the form:

Vnm =
1

4 π ε0 k

|~µn| |~µm|

R3
nm

[~en · ~em − 3 (~u · ~en) (~u · ~em)] (3)

where ε0 = 8.8542 × 10−12 F/m is the electric permittivity of the vacuum, k is
the dielectric constant of the medium, ~µn is the transition dipole moment of the
excitation in site n, ~u is the unit vector directed from the center of the dipole in site
n to center of the dipole in site m, ~en is the unit vector that defines the direction
of the transition dipole moment in site n and Rnm is the distance between the
centers of dipoles in sites n and m. In the following, the positions and orientations
of the transition dipole moments for the Amide I excitations are calculated from
the positions of the carbon and oxygen in the carbonyl groups and the position
of the nitrogen in the same peptide group [20, 26]. Nevskaya and Chirgadze [26]
estimate that, in α-helices, the intensity of the transition dipole moment of the
Amide I excitation is 0.3 D and that it makes an angle of 17o away from the CO
bond and in the direction of the CN bond, a value that is also within the range
of 15o to 25o determined by Krimm and Bandekar [20]. On the other hand, in
the absence of any values for the transition dipole moment of the bending mode of
water, either theoretical or experimental, its orientation was tentatively assumed to
be from the oxygen atom to the center of mass of the two hydrogen atoms in each
water molecule and, to keep the number of parameters in (2) as small as possible,
its strength was taken to be equal to that of the amide I vibration.

Thirdly, a most important generalization in Hamiltonian (1) with respect to the
original Davydov/Scott Hamiltonian [12, 34] is the fact that full atomic structure
of the protein-water systems is taken into account; in this spirit, the interactions
between all the atoms is given by the classical potential AMBER [27, 6]:

Hat =
∑

bonds

Kd(d− deq)
2 +

∑

angles

Kθ(θ − θeq)
2+

+
∑

dihedrals

Vn

2
[1 + cos(nφ− γ)] +

∑

i<j

[

Aij

R12
ij

−
Bij

R6
ij

+
qiqj
εRij

]

,

(4)

where Rij = |~Ri − ~Rj |, ~Rj being the three-dimensional position of atom j in the
protein-water system. While in the original Davydov/Scott Hamiltonian [12, 34] the
site motions are described by a harmonic potential, the atomic Hamiltonian above
includes also nonlinear terms. Indeed, although covalent bonds between two atoms
(first term) and angle bending between two consecutive covalent bonds (second
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term) are represented by harmonic potentials, torsions (third term) are represented
by a truncated Fourier series and hydrogen bonds and other nonbonded interactions
(fourth term) are represented by a Lennard-Jones potential with the electrostatic
interactions represented by a Coulomb potential. The nonlinear atomic Hamiltonian
(4) depends on many empirical parameters (Kd, deq, Kθ, θeq, Vn, n, γ, Aij , Bij , qj)
which have been determined by fittings to experimental data and by comparisons
with fully quantum calculations [27, 6]. In fact, the development of these atomic
molecular dynamics potentials is still being pursued but they have already been
successfully applied by the pharmaceutical and biotechnology industries to rational
design of drugs. It should also be noted that, as in many previous studies [12, 34, 11],
the motions of all the atoms in the protein-water system are treated classically.

Finally, the third term in (1), the interaction Hamiltonian, Ĥint, is as follows:

Ĥint = χ

N
∑

n=1

[(

|~RO
n − ~RN

m| − deq

)

â†nân

]

cos(θnm) (5)

As in the original Davydov/Scott Hamiltonian χ is the nonlinearity parameter whose
value is taken to be 62 pN , as in many other studies [12, 34, 11]. This Hamiltonian

represents the effect that changes in the hydrogen bond length
(

|~RO
n − ~RN

m|
)

have

on the amide I energy εn. How are the hydrogen bonds defined ? For a given
oxygen atom in the C=O group of amino acid n, a search is made over the nitrogen
atoms of the NH groups of all the other amino acids m 6= n to find whether one
of these nitrogens is at a distance 4.5 Å or less away from the oxygen, in which
case the C=O group of amino acid n is considered to be hydrogen-bonded to the
NH group of amino acid m; the equilibrium value, deq, of these hydrogen bonds
was estimated from the equilibrium ensemble of conformations of the protein-water

system to be 2.98 Å and the term
(

|~RO
n − ~RN

m| − deq

)

is thus the deviation from

equilibrium values of the hydrogen bonds, as usual [12, 34, 11].
Another extension with respect to the original Davydov/Scott model is the factor

cos(θnm) which takes into account the strong directionality that characterizes hy-
drogen bonds, θnm being the angle between the C=O bond of amino acid n makes
with the H-N bond of amino acid m. When this angle is greater than 30o the
hydrogen bond between the C=O and the NH groups is considered to be broken
and the corresponding term in (5) is set to zero. It is found that, together with
the threshold value of 4.5 Å in deq, the angle dependence makes for a relatively
smooth variation of the interaction Hamiltonian with the positions of the oxygen
and nitrogen atoms of the amino acids.

Since the atom motions are classical, the components of the positions and veloci-
ties of all atoms are real; on the other hand, the motion of the vibrational excitation
(either an amide I of a peptide group or a bending mode of a water molecule) is
quantum mechanical, a difference that is marked by the hats above the excitation
(2) and the interation (5) Hamiltonians. In this approach, the exact wavefunction
for one quantum of excitation is:

Ψ
(

{ ~Rn}, t
)

=

N
∑

r=1

ϕr

(

{ ~Rn}, t
)

â†r |0 > (6)

where ϕr is the probability amplitude for an amide I excitation in the peptide group
r, or for a bending mode excitation in water molecule r, as the case may be, whose
specific dependence on the conformation of the protein-water system and on time
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is not specified a priori and will be determined by the equations of motion. The
latter are derived by substituting the wavefunction (6) in the Schrödinger equation
for the Hamiltonian (1-5) and using Hamilton’s equations for the classical part, and
are as follows:

Ĥ Ψ = EΨ (7)

Mr
~̈Rr = −~∇Hat

(

{ ~Rn}
)

− χ cos (θrm) | ϕr |2 ~ur + ~Fr(t)− Γ ~̇Rr (8)

where ~ur is the unit vector from the oxygen atom of the C=O group of amino acid
r to the hydrogen atom of the NH group of amino acid m to which amino acid r is
hydrogen bonded (when this bond exists) and only affects directly the dynamics of
those two atoms, i.e. this term is zero for all other atoms.

Eqn.(8) is a classical Langevin equation and describes the coupling of the protein-

water system to a thermal bath at temperature T . ~Fr(t) is a stochastic force applied

to atom r due to the thermal fluctuations and −Γ ~̇Rr is a damping term, Γ being
the strength of the damping. For eqn.(8) to lead to the correct thermal statistics
of classical systems, the stochastic forces and the damping terms must obey the
fluctuation-dissipation theorem < Fr(t)Fm(t′) >= 2MrΓkBTδrmδ(t− t′), kB being
the Boltzmann constant.

Without the second term, eqn(8) is that which is used for molecular dynamics
of proteins in water with the AMBER force field [27, 6]. The second term, on the
other hand, represents the influence that a quantum excitation in amino acid r has
on the position of the oxygen and hydrogen atoms of the C=O and NH groups,
respectively. Since it is found that, at T = 300 K, the other terms are, an average,
ten to hundred times stronger than the second term, in the calculations presented
in section 3 the second term was neglected.

It should be pointed out that the equations of motion (7) and (8) represent the
coupling of a stationary Schrödinger equation for the quantum excitation to classical
equations of motion for the atoms in the protein-water system. The reasons for this
choice are explained in detail in references [10, 11]. A short version is as follows.
It has been found that when the dynamical thermalization of a mixed quantum-
classical system is accomplished by coupling the classical part to a classical bath,
as is done in (8), the result is that the quantum part will obey classical statistics as
well [10, 11, 22]. The reason is that when the time-dependent Schrödinger equation
is coupled to the classical Langevin equation without any precautions, the classical
bath makes the quantum states diffuse in the quantum phase space in a manner that
violates the quantum statistics rule according to which only eigenstates matter for
the quantum thermal average. One solution to this problem is that implemented in
(7) and (8), in which the classical Langevin equation for the atoms in the protein-
water system is coupled to the stationary Schrödinger equation for the quantum
excitations (which ensures that only eigenstates of the latter are considered). This
solution is only strictly valid when the quantum excitation responds very fast to
any changes in the classical conformation, an approximation which is assumed valid
here.

Finally, it is important to explain how the equations of motion (7) and (8) are
integrated. The initial condition is a given conformation of the protein-water system
(a set of positions for all the atoms) and a set of velocities e.g. obeying a Boltzmann
distribution at a given temperature. From the positions of all oxygens in the C=O
groups and of all hydrogen and all nitrogens in the NH groups, the dipole-dipole
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interactions (3) are calculated and inserted in the stationary Schrödinger equation
(7); then, the eigenvalue problem is solved numerically and a new quantum state
state is selected in a Monte Carlo step, to make sure that in the end of many
such selections the quantum states have been sampled with the proper Boltzmann
weight; also, to satisfy Franck-Condon factors a new state is only accepted when
its overlap with the old state is sufficiently large; once a new state is selected, it
can be substituted in the Langevin equation (8) and the integration of this classical
equation advances one step and leads to a new conformation, with which the same
procedure is applied all over again. As explained above, the second term in (8)
has been neglected and thus, while the conformation of the protein-water system
influences strongly the states assumed by the quantum excitation, the latter does
not have an influence in those conformations.

Figure 1. Left figure: Three dimensional display of the prion-
water system; the water molecules are in red and the protein is in
yellow. Right figure: Detail of the three-dimensional structure of
the prion; the backbone is in red, the Glutamine and Asparagine
side chains are in thick green and the remaining side chains are in
thin yellow.

3. Results. The proteins considered here are associated with two misfolding dis-
eases, namely, prion diseases and Huntington’s diseases. The proteins associated
with these diseases have one common feature in their amino acid sequences (which
is in fact shared by all proteins associated with misfolding diseases): they both have
regions rich in either the amino acids GLN and/or Asparagine (ASN). In section 3.2
the relevance of this fact to protein misfolding, in the light of the VES hypothesis,
is emphasized.

The structure of the prion has been solved experimentally and the atom coor-
dinates that can be found in file PDB1QLX [37], publicly available in the Protein
Data Bank [4], have been used as an initial condition for the prion protein. On the
other hand, the structure of the protein huntingtin is still unknown; what is known
is that the disease is caused by mutations in huntingtin in which extra stretches of
GLN amino acids are added to the normal primary sequence. For instance, hunt-
ingtin with glutamine repeats constituted by more than 37 GLNs lead to misfolding



1040 LEONOR CRUZEIRO

of huntingtin and aggregation [18]. Thus, also studied here is a helix constituted
by 46 GLN amino acids.

Both the prion and the polyglutamine helix were immersed in an explicit water
bath, using the Leap module of AMBER [27, 6] and the resulting full protein-water
systems are displayed in figures 1 and 2. The total number of atoms is 23521 for the
prion-water system and 18398 for the polyglutamine-water system, the prion itself
contributing 1696 atoms and the poly-glutamine helix alone possessing 785 atoms.

Figure 2. Left figure: Three dimensional display of the poly-
glutamine-water system; the water molecules are in red and the
protein is in yellow. Right figure: Detail of three dimensional
structure of the poly-glutamine helix; the backbone is in red and
the Glutamine side chains are in thick green.

3.1. Classical molecular dynamics simulations. The two protein-water sys-
tems were equilibrated at 300 K in a classical MD simulation, by integrating Eqn.(8)
with the AMBER force field [27, 6]. The root mean square deviation per atom
(RMSD) with respect to the initial structure is calculated to gauge the structural
instability of the protein during the MD simulation and is displayed in figure 3.
The larger the RMSD the greater the changes in protein conformation at a given
time. Figure 3 shows that, even if the poly-glutamine helix has less than half of the
atoms of the prion, its structure changes more with respect to the initial structure
than the prion. This is because the initial structure for the poly-glutamine helix
is a very open structure, only constrained by the internal hydrogen bonds of the
helix, and by the interactions with the water molecules, while the prion structure
is maintained by intra residue-residue interactions as well. The general conclusion
is, however, that both proteins are structurally stable throughout the simulation.
In fact, Figures 1 and 2 display the structures of the two proteins at the end of the
MD simulations and confirm that both of them have retained the average structure
they had at the beginning.

3.2. Quantum energy transfer. While the MD simulations in the previous sec-
tion did not reveal any signs of the structural instability that prions and poly-
glutamine stretches are known to have, here a new possible cause for this instability,
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Figure 3. Variation of the cumulative RMSD with respect to the
corresponding initial structure. The solid line is for the prion and
the dashed line is for the poly-glutamine helix. The RMSD values
are in Å and time is in picoseconds.

is explored. This new cause is based on the VES hypothesis. While from the point
of view of the classical force fields the amino acids GLN and ASN, which occur
more frequently in the proteins associated with misfolding diseases, are not very
different from many other amino acids, from the point of view of the VES hypoth-
esis they are truly unique: they are the only two amino acids that can have amide
I excitations also in their side chains. I.e. while all amino acids can have amide I
excitations in their main chain (that constitutes the protein backbone), GLN and
ASN are the only two amino acids can also have amide I excitations in their side
chains [20]. This means that they can divert to their side chains amide I excitations
that propagate through the protein backbone and vice versa. Also, because they
are polar amino acids, they tend to be on the surface of proteins, in close contact
with water, and therefore very well positioned to extract bending mode excitations
from the water molecules to their side chains.

In this section, the net increase in the energy transferred from water to the
protein, due to the presence of GLN and ASN is calculated in the following manner.
We start from an initial condition corresponding to a bending mode excitation in
a water close to the protein and, using eqns.(7 and 8), calculate the probability,
PP =

∑

amide I sites | ϕr |2, that, after a time t, this excitation has been transferred
to the protein; and we calculate this probability PP in the presence of GLN and ASN
and in the absence of those two amino acids (what is meant by absence here is that
the GLN and ASN side chain sites for amide I excitation are not taken into account
in the calculation of the quantum states, leaving only the backbone sites); the ratio
between these two probabilities is the net enhancement in the energy transferred
from the water to the protein due to the presence of GLN and ASN. If this ratio
is greater than 1 there is more energy transferred from the water to protein in the
presence of GLN and ASN and if it is equal to 1 there is no enhancement.

To calculate the net increase of energy transferred to water (if it takes place),
we can start instead with an initial quantum state corresponding to an amide I
excitation in the protein and calculate the probability, PW =

∑

waters r | ϕr |2, that,
after a time t, this excitation has become a bending mode excitation of a water
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molecule; and we can calculate this probability PW in the presence of GLN and
ASN and in the absence of those two amino acids and make the ratio between these
two probabilities, which is now the net enhancement in the energy transferred from
the protein to the water.

The two probability ratios, calculated for the prion and for the poly-glutamine
helix, are displayed in figure 4. The thin solid line corresponds to the probability
ratio for energy transfer from the protein to the water and is 1 at all times, for
both protein-water systems (there is only one thin line in the figure because they
are superimposed), i.e., there is no enhancement in the transfer of energy from
the protein to the water for both the prion and the polyglutamine helix. On the
other hand, the presence of GLN amino acids leads to a strong enhancement in the
transfer of energy from the water to the protein in the case of the polyglutamine
helix (dashed line in figure 4). Indeed, the amount of energy transferred from water
to the polyglutamine helix is 15 times greater in the first picosecond, when GLN
amino acids are present. Because the poly-glutamine helix is a very open structure,
in which the GLN side chains are in permanent contact with water, the enhancement
factor later decreases, but it is still around 3 after 5 picoseconds. The presence of
GLN and ASN amino acids also leads to an enhancement of the energy transferred
from the water to the prion (solid line in figure 4), but not as markedly as for the
poly-glutamine helix.
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Figure 4. Ratio of the probability of a vibrational excitation to
jump from the water to the protein (in the presence and in the
absence of GLN and ASN), for the prion (solid line) and for the
poly-glutamine helix (dashed line), and from the protein to the
water in both proteins (thin line) (see text). Time is in ps.

3.3. Viability of quantum energy transfer. The new cause proposed here for
the structural instability of the prion and of the poly-glutamine helix relies on the
existence of a population of bending mode excitations in the waters that surround
proteins. Since the bending mode (and the amide I mode) has an energy that is
approximately 8 times larger than kBT , for T = 300 K, it may be thought that
a bending mode excitation is too rare an event to make this transfer of energy a
viable cause for the structural instability of the prion and of mutated huntingtin. In
general, proteins last around 48 hours in cells, after which period they are broken
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back into amino acids and recycled. Let us then estimate the number of the bending
mode excitations that arise, on average, around a protein, during 48 hours.

Let P be the probability of a bending mode excitation in 1 water molecule,
when that water molecule is in equilibrium at a temperature T . If, on average,
there are NW hydration waters around the protein, then the average number of
bending mode excitations around a protein, at any instant, when the system is
in equilibrium, is N1 = P NW . Now, vibrational excitations have finite lifetimes,
normally of the order of a few picoseconds. To maintain the average number of
bending mode excitations that must be present at thermal equilibrium, new bending
mode excitations must be constantly created to compensate for those which are
annihilated. The number of bending mode excitations that are created per second
can be estimated from the expression B ρνN0, where B is Einstein’s absorption

coefficient, ρν = 8πhν3

c3
1

exp (hν/kBT )−1 is Planck’s blackbody frequency distribution

and N0 is the number of water molecules in the ground state [5]. Since the rate

of spontaneous decay, A, is related to B by A = 8πhν3

c3 B and the population of
water molecules in the ground state, N0, and the population of water molecules

with one bending mode excitation, N1, is related by N1/N0 = exp
(

− εw
kB T

)

, the

rate of creation of bending mode excitations is given by N1 A
exp

(

εw
kB T

)

exp
(

εw
kB T

)

−1
, where

A = 1/τ , τ being the lifetime of the bending mode vibration.
In order to determine the probability P for a bending mode excitation in the

protein-water systems we considered here we need to know the partition function
for the excitations described by the Hamiltonian (1-5), which is a very difficult task
indeed. Instead, to get an estimate of the order of magnitude for this probability, let
us consider the bending mode as an isolated harmonic oscillator. In this case, the

partition function is Z = exp
(

− εw
2 kB T

)

/
(

1− exp
(

− εw
kB T

))

and the probability

for a water molecule to have Q quanta of excitation, P (Q) =
exp

(

−
(Q+1/2) εw

kB T

)

Z =

exp
(

− Qεw
kB T

)(

1− exp
(

− εw
kB T

))

. Since the energy of a bending mode excitation

is approximately 1640 cm−1 [35], at T = 300 K, the probability that one water
molecule has a bending mode excitation is P ≈ 0.00038. The number of water
molecules less than 4 Å away from a C=O group in the protein, calculated from the
snapshots of the MD simulations, is 238 for the prion and 300 for the polyglutamine
helix. Using an average lifetime of 5 ps for the bending mode of water we calculate
that, on average, in 1 s, some 10+11 bending mode excitations arise close to a
protein and in the 46 hour period that proteins generally last in cells, some 1016

bending mode excitations are created close to a protein! Even if this number was
calculated after a number of approximations the conclusion is that the mechanism
for the structural destabilization of proteins proposed here is certainly viable!

4. Discussion. The starting point of this study is the fact that the triggers of pro-
tein conformational changes are quantum events, and thus quantum states. This
is irrefutable when the triggers are chemical reactions since chemical reactions are
quantum processes and the immediate outcome of a quantum process is a quantum
state. The crucial question then is what form these quantum states take. According
to the VES hypothesis [7, 9] adopted in this study, the quantum states are vibra-
tional excited states and according to the Davydov/Scott model [12, 34], which here
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has been generalized to take into account the full atomic composition of a protein-
water system, the quantum states are amide I excitations. The ultimate aim of the
calculations presented in this paper is to show that the VES hypothesis can explain
the greater structural instability of the proteins associated with misfolding diseases.

Two curious facts about the proteins associated with misfolding diseases are first,
that they have stretches rich in two particular amino acids, namely, GLN and ASN
[18] and secondly that such stretches enhance the propensity for protein aggregation
[24]. The two proteins investigated here, namely the prion and the polyglutamine
helix, are examples of proteins that misfold and aggregate [29, 30, 32, 28, 21].
Although the MD simulations presented in section 3 are too short to make definitive
conclusions about the structural stability of the two proteins considered, the fact of
the matter is that classical potentials, such as AMBER, have difficulty in explaining
why GLN and ASN should make a protein structurally unstable since the force fields
associated with these two amino acids are similar to those of many other amino acids
[27, 6] that lead to structurally stable proteins. On the other hand, as is pointed
out in section 3, from the point of view of the VES hypothesis, GLN and ASN are
distinct from all other amino acids in that they are the only two amino acids that

can have amide I excitations in their side chains and thus they are the only two
amino acids that can interfere with the amide I propagation that can take place
along the backbone of all proteins [7, 9, 8].

In section 3 the extra energy that can pass from the bending mode of water
to the amide I vibration of the protein because of the presence of GLN and ASN
was calculated for the prion and for the polyglutamine helix and, in both cases,
an enhancement was found. According to the VES hypothesis vibrational excited
states are the triggers of conformational changes and proteins which have greater
amounts of energy in that form will have a stronger probability of undergoing a
conformational change. The enhancement found can therefore explain why proteins
with greater amounts of GLN and ASN are structurally less stable than normal
proteins.

Figure 4 also shows that the enhancement in the energy transferred from the
water to the protein is more pronounced for the polyglutamnine helix than for the
prion. This difference may explain why Huntington’s disease, which is associated
with extra stretches of GLN amino acids added to the protein huntingtin, occurs
in humans at a much younger age (around 20 years of age or younger) than prion
diseases, which tend to arise in elderly people.

Finally, the calculations in section 3.3 indicate that the number of bending mode
excitations created by thermal fluctuations alone make the mechanism proposed
here for the structural de-stabilization of proteins certainly viable. Although the
estimated number of bending mode excitations that can be created around one
protein during its existence in cells was arrived at after a number of approxima-
tions, its magnitude (1016!) suggests that, not only is the mechanism for protein
destabilization proposed here certainly viable, but also that proteins and cells may
well have to defend themselves against it. From this point of view, it is interesting
that the proteins of thermophiles (microorganisms that live in thermal vents at the
bottom of the ocean, where the temperature reaches the boiling point of water)
have virtually no GLN- or ASN-rich regions. Although a quantitative investigation
of the influence of temperature on this energy transfer mechanism has not yet been
performed, it is possible to anticipate that its efficiency increases with temperature
and that, at the boiling point of water, even normal proteins, with smaller amounts
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of GLNs and ASNs, may become structurally unstable. And, to end with a predic-
tion, according to the VES hypothesis, ice worms, that live in ice environments and
melt at 4 C, must have proteins with greater amounts of GLN and ASN, in order
to function properly. This can be proved or disproved by an analysis of the genome
of the ice worm.
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