15 research outputs found

    Mother-fetus transference of lead and cadmium in rats, involvement of metallothionein

    No full text
    This study was designed to assess the effect of Cadmium (Cd) and lead (Pb) exposure during pregnancy in rats and their correlation with metallothionein (MT). Rats were exposed to either 10 ppm Cd or 300 ppm Pb through drinking water during pregnancy. Both metals were measured in placenta, fetus brain and fetal and maternal blood. MT was quantified in placenta and fetus brain and it was also observed in placenta by immunohistochemical technique. Offspring weight was found to be significantly lower for the Cd exposure group than for the control group. A Cd increase in the placenta of the exposed group was accompanied by MT induction; these effects were related to a limited accumulation of Cd in fetus brain. In contrast, dam Pb exposure caused an accumulation of Pb in the fetus brain and induced damage to placenta. The results account for differences in the transference of these metals during pregnancy that could be related to their toxicity

    Morphometric analysis of brain lesions in rat fetuses prenatally exposed to low-level lead acetate: correlation with lipid peroxidation

    No full text
    The effect of prenatal lead acetate exposure was studied microscopically together with the concentration of lead and lipid fluorescent products (LFP) in the brain of rat fetuses. Wistar rats were intoxicated with a lead solution containing either 160 or 320 ppm of lead acetate solution during 21 days through drinking water. The control group (ten rats) received deionized water for the same period. The rats were killed on gestation day 21 and fetuses were obtained; the placenta, umbilical cord and parietal cortex (Cx), striatum (St), thalamus (Th) and cerebellum (Ce) were collected for measuring tissue lead concentration, LFP as an index of lipid peroxidation and histopathologic examination. Lead contents were increased in placenta, umbilical cord, St, Th and Cx in both lead-exposed groups. Lead exposure increased (LFP) in placenta and umbilical cord, St, Th and Ce as compared to the control group. Histopathological examination showed severe vascular congestion in placenta, the Cx, St, Th and Ce with hyperchromatic and shrunken cells. Interstitial oedema was found in all regions studied of both lead exposed groups. The morphometric evaluation of the studied brain regions showed an absolute decrease in total cell number and increased number of damaged cells and interstitial oedema. Our results show that morphological changes in rat brain are correlated with increased lipid peroxidation, and the lead levels of the umbilical cord, however it is not clear whether oxidative stress is the cause or the consequence of these neurotoxic effects of lead

    Differences in firing efficiency, chromatin, and transcription underlie the developmental plasticity of the Arabidopsis DNA replication origins

    Get PDF
    Eukaryotic genome replication depends on thousands of DNA replication origins (ORIs). A major challenge is to learn ORI biology in multicellular organisms in the context of growing organs to understand their developmental plasticity. We have identified a set of ORIs of Arabidopsis thaliana and their chromatin landscape at two stages of post-embryonic development. ORIs associate with multiple chromatin signatures including transcription start sites (TSS) but also proximal and distal regulatory regions and heterochromatin, where ORIs colocalize with retrotransposons. In addition, quantitative analysis of ORI activity led us to conclude that strong ORIs have high GC content and clusters of GGN trinucleotides. Development primarily influences ORI firing strength rather than ORI location. ORIs that preferentially fire at early developmental stages colocalize with GC-rich heterochromatin, but at later stages with transcribed genes, perhaps as a consequence of changes in chromatin features associated with developmental processes. Our study provides the set of ORIs active in an organism at the post-embryo stage that should allow us to study ORI biology in response to development, environment, and mutations with a quantitative approach. In a wider scope, the computational strategies developed here can be transferred to other eukaryotic systems.This research was supported by Secretaría de Estado de Investigación, Desarrollo e Innovación, grants BFU2012-34821, BFU2013-50098-EXP, and BFU2015-68396-R to C.G., BIO2016-79043-P to U.B. and AGL2013-43244-R to J.M.C., as well as by institutional grants from Fundacion Ramon Areces and Banco de Santander to the CBMSO.Peer reviewe
    corecore