109 research outputs found

    Dispersal Routes and Habitat Utilization of Juvenile Atlantic Bluefin Tuna, Thunnus thynnus, Tracked with Mini PSAT and Archival Tags

    Get PDF
    Between 2005 and 2009, we deployed 58 miniature pop-up satellite archival tags (PSAT) and 132 implanted archival tags on juvenile Atlantic bluefin tuna (age 2–5) in the northwest Atlantic Ocean. Data returned from these efforts (n = 26 PSATs, 1 archival tag) revealed their dispersal routes, horizontal and vertical movements and habitat utilization. All of the tagged bluefin tuna remained in the northwest Atlantic for the duration observed, and in summer months exhibited core-use of coastal seas extending from Maryland to Cape Cod, MA, (USA) out to the shelf break. Their winter distributions were more spatially disaggregated, ranging south to the South Atlantic Bight, northern Bahamas and Gulf Stream. Vertical habitat patterns showed that juvenile bluefin tuna mainly occupied shallow depths (mean  = 5–12 m, sd  = 15–23.7 m) and relatively warm water masses in summer (mean  = 17.9–20.9°C, sd  = 4.2–2.6°C) and had deeper and more variable depth patterns in winter (mean  = 41–58 m, sd  = 48.9–62.2 m). Our tagging results reveal annual dispersal patterns, behavior and oceanographic associations of juvenile Atlantic bluefin tuna that were only surmised in earlier studies. Fishery independent profiling from electronic tagging also provide spatially and temporally explicit information for evaluating dispersals rates, population structure and fisheries catch patterns

    Measuring Energy Expenditure in Sub-Adult and Hatchling Sea Turtles via Accelerometry

    Get PDF
    Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake (o2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25–44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean o2 over an hour in a green turtle from measures of ODBA and mean flipper length (R2 = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22–30°C) had only a small effect on o2. A o2-ODBA equation for the loggerhead hatchling data was also significant (R2 = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets

    Reproductive Schedules in Southern Bluefin Tuna: Are Current Assumptions Appropriate?

    Get PDF
    Southern bluefin tuna (SBT) appear to comprise a single stock that is assumed to be both mixed across its distribution and having reproductive adults that are obligate, annual spawners. The putative annual migration cycle of mature SBT consists of dispersed foraging at temperate latitudes with migration to a single spawning ground in the tropical eastern Indian Ocean. Spawning migrations have been assumed to target two peaks in spawning activity; one in September-October and a second in February-March. SBT of sizes comparable to that of individuals observed on the spawning ground were satellite tagged in the Tasman Sea region (2003–2008) and demonstrated both migrations to the spawning grounds and residency in the Tasman Sea region throughout the whole year. All individuals undertaking apparent spawning migrations timed their movements to coincide with the second recognised spawning peak or even later. These observations suggest that SBT may demonstrate substantial flexibility in the scheduling of reproductive events and may even not spawn annually as currently assumed. Further, the population on the spawning grounds may be temporally structured in association with foraging regions. These findings provide new perspectives on bluefin population and spatial dynamics and warrant further investigation and consideration of reproductive schedules in this species

    Jellyfish Support High Energy Intake of Leatherback Sea Turtles (Dermochelys coriacea): Video Evidence from Animal-Borne Cameras

    Get PDF
    The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08–3:38 h), and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata) was the dominant prey (83–100%), but moon jellyfish (Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001). Estimates of energy intake averaged 66,018 kJ•d−1 but were as high as 167,797 kJ•d−1 corresponding to turtles consuming an average of 330 kg wet mass•d−1 (up to 840 kg•d−1) or approximately 261 (up to 664) jellyfish•d-1. Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass•d−1 equating to an average energy intake of 3–7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to southward migration

    Fin Spine Bone Resorption in Atlantic Bluefin Tuna, Thunnus thynnus, and Comparison between Wild and Captive-Reared Specimens

    Get PDF
    Bone resorption in the first spine of the first dorsal fin of Atlantic bluefin tuna (ABFT) has long been considered for age estimation studies. In the present paper spine bone resorpion was assessed in wild (aged 1 to 13 years) and captive-reared (aged 2 to 11 years) ABFT sampled from the Mediterranean Sea. Total surface (TS), solid surface (SS) and reabsorbed surface (RS) were measured in spine transverse sections in order to obtain proportions of SS and RS. The spine section surface was found to be isometrically correlated to the fish fork length by a power equation. The fraction of solid spine bone progressively decreased according to a logarithmic equation correlating SS/TS to both fish size and age. The values ranged from 57% in the smallest examined individuals to 37% in the largest specimens. This phenomenon was further enhanced in captive-reared ABFT where SS/TS was 22% in the largest measured specimen. The difference between the fraction of SS of wild and captive-reared ABFT was highly significant. In each year class from 1- to 7-year-old wild specimens, the fraction of spine reabsorbed surface was significantly higher in specimens collected from March to May than in those sampled during the rest of the year. In 4-year-old fish the normal SS increase during the summer did not occur, possibly coinciding with their first sexual maturity. According to the correlations between SS/TS and age, the rate of spine bone resorption was significantly higher, even almost double, in captive-reared specimens. This could be attributed to the wider context of systemic dysfunctions occurring in reared ABFT, and may be related to a number of factors, including nutritional deficiencies, alteration of endocrine profile, cortisol-induced stress, and loss of spine functions during locomotion in rearing conditions.Versión del editor4,411

    Spawning of bluefin tuna in the black sea: historical evidence, environmental constraints and population plasticity

    Get PDF
    <div><p>The lucrative and highly migratory Atlantic bluefin tuna, <em>Thunnus thynnus</em> (Linnaeus 1758<em>;</em> Scombridae), used to be distributed widely throughout the north Atlantic Ocean, Mediterranean Sea and Black Sea. Its migrations have supported sustainable fisheries and impacted local cultures since antiquity, but its biogeographic range has contracted since the 1950s. Most recently, the species disappeared from the Black Sea in the late 1980s and has not yet recovered. Reasons for the Black Sea disappearance, and the species-wide range contraction, are unclear. However bluefin tuna formerly foraged and possibly spawned in the Black Sea. Loss of a locally-reproducing population would represent a decline in population richness, and an increase in species vulnerability to perturbations such as exploitation and environmental change. Here we identify the main genetic and phenotypic adaptations that the population must have (had) in order to reproduce successfully in the specific hydrographic (estuarine) conditions of the Black Sea. By comparing hydrographic conditions in spawning areas of the three species of bluefin tunas, and applying a mechanistic model of egg buoyancy and sinking rate, we show that reproduction in the Black Sea must have required specific adaptations of egg buoyancy, fertilisation and development for reproductive success. Such adaptations by local populations of marine fish species spawning in estuarine areas are common as is evident from a meta-analysis of egg buoyancy data from 16 species of fish. We conclude that these adaptations would have been necessary for successful local reproduction by bluefin tuna in the Black Sea, and that a locally-adapted reproducing population may have disappeared. Recovery of bluefin tuna in the Black Sea, either for spawning or foraging, will occur fastest if any remaining locally adapted individuals are allowed to survive, and by conservation and recovery of depleted Mediterranean populations which could through time re-establish local Black Sea spawning and foraging.</p> </div
    • …
    corecore