1,782 research outputs found
Insights into Analogy Completion from the Biomedical Domain
Analogy completion has been a popular task in recent years for evaluating the
semantic properties of word embeddings, but the standard methodology makes a
number of assumptions about analogies that do not always hold, either in recent
benchmark datasets or when expanding into other domains. Through an analysis of
analogies in the biomedical domain, we identify three assumptions: that of a
Single Answer for any given analogy, that the pairs involved describe the Same
Relationship, and that each pair is Informative with respect to the other. We
propose modifying the standard methodology to relax these assumptions by
allowing for multiple correct answers, reporting MAP and MRR in addition to
accuracy, and using multiple example pairs. We further present BMASS, a novel
dataset for evaluating linguistic regularities in biomedical embeddings, and
demonstrate that the relationships described in the dataset pose significant
semantic challenges to current word embedding methods.Comment: Accepted to BioNLP 2017. (10 pages
Spin-Peierls and Antiferromagnetic Phases in Cu{1-x}Zn{x}GeO{3}: A Neutron Scattering Study
Comprehensive neutron scattering studies were carried out on a series of
high-quality single crystals of Cu_{1-x}Zn_xGeO_3. The Zn concentration, x, was
determined for each sample using Electron Probe Micro-Analysis. The measured Zn
concentrations were found to be 40-80% lower than the nominal values.
Nevertheless the measured concentrations cover a wide range which enables a
systematic study of the effects due to Zn-doping. We have confirmed the
coexistence of spin-Peierls (SP) and antiferromagnetic (AF) orderings at low
temperatures and the measured phase diagram is presented. Most surprisingly,
long-range AF ordering occurs even in the lowest available Zn concentration,
x=0.42%, which places important constraints on theoretical models of the AF-SP
coexistence. Magnetic excitations are also examined in detail. The AF
excitations are sharp at low energies and show no considerable broadening as x
increases indicating that the AF ordering remains long ranged for x up to 4.7%.
On the other hand, the SP phase exhibits increasing disorder as x increases, as
shown from the broadening of the SP excitations as well as the dimer reflection
peaks.Comment: 17 preprint style pages, 9 postscript files included. Submitted to
Phys. Rev. B. Also available from
http://insti.physics.sunysb.edu/~mmartin/pubs.htm
A single chain analysis of doped quasi one dimensional spin 1 compounds: paramagnetic versus spin 1/2 doping
We present a numerical study of single chain models of doped spin 1
compounds. We use low energy effective one-dimensional models for both the
cases of paramagnetic and spin-1/2 doping. In the case of paramagnetic doping,
the effective model is equivalent to the bond disordered spin-1/2 chain model
recently analyzed by means of real space renormalization group by Hyman and
Yang. By means of exact diagonalizations in the XX limit, we confirm the
stability of the Haldane phase for weak disorder. Above a critical amount of
disorder, the effective model flows to the so called random singlet fixed
point. In the case of spin-1/2 doping, we argue that the Haldane phase should
be destabilized even for weak disorder. This picture is not in contradiction
with existing experimental data. We also discuss the possible occurrence of
(unobserved) antiferromagnetically ordered phases.Comment: 13 pages, 7 included figure
Antiferromagnetism and Superconductivity in UPt_3
The short ranged antiferromagnetism recently seen in UPt_3 is proved
incompatible with two dimensional (2D) order parameter models that take the
antiferromagnetism as a symmetry breaking field. To adjust to the local moment
direction, the order parameter twists over very long length scales as per the
Imry-Ma argument. A variational solution to the Ginzburg-Landau equations is
used to study the nature of the short ranged order. Although there are still
two transitions, the lower one is of first order -- in contradiction to
experiments. It is shown that the latent heat predicted by the 2D models at the
lower transition is too large not to have been seen. A simple periodic model is
numerically studied to show that the lower transition can not be a crossover
either.Comment: To appear in Journal of Physics: Condensed Matter. 9 pages, 2 figure
Possible Pairing Symmetry of Three-dimensional Superconductor UPt -- Analysis Based on a Microscopic Calculation --
Stimulated by the anomalous superconducting properties of UPt, we
investigate the pairing symmetry and the transition temperature in the
two-dimensional(2D) and three-dimensional(3D) hexagonal Hubbard model. We solve
the Eliashberg equation using the third order perturbation theory with respect
to the on-site repulsion . As results of the 2D calculation, we obtain
distinct two types of stable spin-triplet pairing states. One is the
-wave(B) pairing around and in a small region, which is
caused by the ferromagnetic fluctuation. Then, the other is the (or
)-wave(E) pairing in large region far from the half-filling () which is caused by the vertex corrections only. However, we find that the
former -wave pairing is destroyed by introduced 3D dispersion. This is
because the 3D dispersion breaks the favorable structures for the -wave
pairing such as the van Hove singularities and the small pocket structures.
Thus, we conclude that the ferromagnetic fluctuation mediated spin-triplet
state can not explain the superconductivity of UPt. We also study the case
of the pairing symmetry with a polar gap. This -wave(A) is stabilized
by the large hopping integral along c-axis . It is nearly degenerate with
the suppressed (or )-wave(E) in the best fitting parameter region
to UPt (). These two p-wave pairing states exist in
the region far from the half-filling, in which the vertex correction terms play
crucial roles like the case in SrRuO.Comment: 15 pages, 12 figure
On the soliton width in the incommensurate phase of spin-Peierls systems
We study using bosonization techniques the effects of frustration due to
competing interactions and of the interchain elastic couplings on the soliton
width and soliton structure in spin-Peierls systems. We compare the predictions
of this study with numerical results obtained by exact diagonalization of
finite chains. We conclude that frustration produces in general a reduction of
the soliton width while the interchain elastic coupling increases it. We
discuss these results in connection with recent measurements of the soliton
width in the incommensurate phase of CuGeO_3.Comment: 4 pages, latex, 2 figures embedded in the tex
- …
