243 research outputs found

    TPOAb and thyroid function are not associated with breast cancer outcome: evidence from a large-scale study using data from the Taxotere as Adjuvant Chemotherapy Trial (TACT, CRUK01/001)

    Get PDF
    Background: Small-scale studies correlated the presence of thyroid autoimmunity with both improved or worsened breast cancer outcome. Objectives: We aimed to clarify this association in a large cohort using the phase III, randomized, controlled Taxotere as Adjuvant Chemotherapy Trial (TACT, CRUK01/001). Methods: TACT women >18 years old with node-positive or high-risk node-negative early breast cancer (pT1–3a, pN0–1, M0), with stored plasma (n = 1,974), taken 15.5 (median; IQR 7.0–24.0) months after breast surgery were studied. Patients had also received chemotherapy (100%), radiotherapy (1,745/1,974; 88.4%), hormonal therapy (1,378/ 1,974; 69.8%), or trastuzumab (48/1,974; 2.4%). History of thyroid diseases and/or related treatments was not available. The prognostic significance of autoantibodies to thyroid peroxidase (TPOAb; positive ≥6 kIU/L), free-thyroxine and thyrotropin (combined: euthyroid, hypothyroid, hyperthyroid) was evaluated for disease-free survival (DFS), overall-survival (OS), and time-to-recurrence (TTR), with Cox regression models in univariate and multivariable analyses. The extended median follow-up was 97.5 months. Results: No difference in DFS was found by TPOAb status (unadjusted hazard ratio [HR]: 0.97, 95%CI: 0.78–1.19; p = 0.75) and/or thyroid function (unadjusted HR [hypothyroid vs. euthyroid]: 1.15, 95% CI: 0.79–1.68; p = 0.46; unadjusted HR [hyperthyroid vs. euthyroid]: 1.14, 95% CI: 0.82–1.61; p = 0.44). Similar results were obtained for OS, TTR, multivariable analyses, when TPOAb titre by tertiles was considered, and in a subgroup of 123 patients with plasma collected before adjuvant treatments. Conclusions: No evidence for a prognostic role of TPOAb and/or thyroid function in moderate-to-high-risk early breast cancer was found in the largest and longest observational study to date

    Renewable energy in remote communities

    Get PDF
    This article is the result of a competitively tendered University-funded project, this brings together two major Government Policy areas: sustainable communities and use of carbon fuels, and is aimed at influencing the policy debate on the difficulties of linking remote communities to renewable energy production because of poor distribution networks. Linkage with the Sustainable Communities agenda is an essential ingredient, as the proposal is that the renewable energy technologies will be installed and maintained by the communities themselves

    Role of hyaluronan in human adipogenesis : evidence from in-vitro and in-vivo studies

    Get PDF
    Hyaluronan (HA), an extra-cellular matrix glycosaminoglycan, may play a role in mesenchymal stem cell differentiation to fat but results using murine models and cell lines are conflicting. Our previous data, illustrating decreased HA production during human adipogenesis, suggested an inhibitory role. We have investigated the role of HA in adipogenesis and fat accumulation using human primary subcutaneous preadipocyte/fibroblasts (PFs, n = 12) and subjects of varying body mass index (BMI). The impact of HA on peroxisome proliferator-activated receptor gamma (PPARγ) expression was analysed following siRNA knockdown or HA synthase (HAS)1 and HAS2 overexpression. PFs were cultured in complete or adipogenic medium (ADM) with/without 4-methylumbelliferone (4-MU = HA synthesis inhibitor). Adipogenesis was evaluated using oil red O (ORO), counting adipogenic foci, and measurement of a terminal differentiation marker. Modulating HA production by HAS2 knockdown or overexpression increased (16%, p < 0.04) or decreased (30%, p = 0.01) PPARγ transcripts respectively. The inhibition of HA by 4-MU significantly enhanced ADM-induced adipogenesis with 1.52 ± 0.18- (ORO), 4.09 ± 0.63- (foci) and 2.6 ± 0.21-(marker)-fold increases compared with the controls, also increased PPARγ protein expression (40%, (p < 0.04)). In human subjects, circulating HA correlated negatively with BMI and triglycerides (r = −0.396 (p = 0.002), r = −0.269 (p = 0.038), respectively), confirming an inhibitory role of HA in human adipogenesis. Thus, enhancing HA action may provide a therapeutic target in obesity

    New insights into the pathogenesis and nonsurgical management of Graves orbitopathy

    Get PDF
    Graves orbitopathy, also known as thyroid eye disease or thyroid-associated orbitopathy, is visually disabling, cosmetically disfiguring and has a substantial negative impact on a patient’s quality of life. There is increasing awareness of the need for early diagnosis and rapid specialist input from endocrinologists and ophthalmologists. Glucocorticoids are the mainstay of treatment; however, recurrence occurs frequently once these are withdrawn. Furthermore, in >60% of cases, normal orbital anatomy is not restored, and skilled rehabilitative surgery is required. Clinical trials have shown that considerable benefit can be derived from the addition of antiproliferative agents (such as mycophenolate or azathioprine) in preventing deterioration after steroid cessation. In addition, targeted biologic therapies have shown promise, including teprotumumab, which reduces proptosis, rituximab (anti-CD20), which reduces inflammation, and tocilizumab, which potentially benefits both of these parameters. Other strategies such as orbital radiotherapy have had their widespread role in combination therapy called into question. The pathophysiology of Graves orbitopathy has also been revised with identification of new potential therapeutic targets. In this Review we provide an up-to-date overview of the field, outline the optimal management of Graves orbitopathy and summarize the research developments in this area to highlight future research questions and direct future clinical trials

    Modulating gut microbiota in a mouse model of Graves' orbitopathy and its impact on induced disease

    Get PDF
    BACKGROUND: Graves' disease (GD) is an autoimmune condition in which autoantibodies to the thyrotropin receptor (TSHR) cause hyperthyroidism. About 50% of GD patients also have Graves' orbitopathy (GO), an intractable disease in which expansion of the orbital contents causes diplopia, proptosis and even blindness. Murine models of GD/GO, developed in different centres, demonstrated significant variation in gut microbiota composition which correlated with TSHR-induced disease heterogeneity. To investigate whether correlation indicates causation, we modified the gut microbiota to determine whether it has a role in thyroid autoimmunity. Female BALB/c mice were treated with either vancomycin, probiotic bacteria, human fecal material transfer (hFMT) from patients with severe GO or ddH2O from birth to immunization with TSHR-A subunit or beta-galactosidase (βgal; age ~ 6 weeks). Incidence and severity of GD (TSHR autoantibodies, thyroid histology, thyroxine level) and GO (orbital fat and muscle histology), lymphocyte phenotype, cytokine profile and gut microbiota were analysed at sacrifice (~ 22 weeks). RESULTS: In ddH2O-TSHR mice, 84% had pathological autoantibodies, 67% elevated thyroxine, 77% hyperplastic thyroids and 70% orbital pathology. Firmicutes were increased, and Bacteroidetes reduced relative to ddH2O-βgal; CCL5 was increased. The random forest algorithm at the genus level predicted vancomycin treatment with 100% accuracy but 74% and 70% for hFMT and probiotic, respectively. Vancomycin significantly reduced gut microbiota richness and diversity compared with all other groups; the incidence and severity of both GD and GO also decreased; reduced orbital pathology correlated positively with Akkermansia spp. whilst IL-4 levels increased. Mice receiving hFMT initially inherited their GO donors' microbiota, and the severity of induced GD increased, as did the orbital brown adipose tissue volume in TSHR mice. Furthermore, genus Bacteroides, which is reduced in GD patients, was significantly increased by vancomycin but reduced in hFMT-treated mice. Probiotic treatment significantly increased CD25+ Treg cells in orbital draining lymph nodes but exacerbated induced autoimmune hyperthyroidism and GO. CONCLUSIONS: These results strongly support a role for the gut microbiota in TSHR-induced disease. Whilst changes to the gut microbiota have a profound effect on quantifiable GD endocrine and immune factors, the impact on GO cellular changes is more nuanced. The findings have translational potential for novel, improved treatments. Video abstract

    DNA methylation at a nutritionally sensitive region of the PAX8 gene is associated with thyroid volume and function in Gambian children.

    Get PDF
    Funder: Wellcome TrustPAX8 is a key thyroid transcription factor implicated in thyroid gland differentiation and function, and PAX8 gene methylation is reported to be sensitive to the periconceptional environment. Using a novel recall-by-epigenotype study in Gambian children, we found that PAX8 hypomethylation at age 2 years is associated with a 21% increase in thyroid volume and an increase in free thyroxine (T4) at 5 to 8 years, the latter equivalent to 8.4% of the normal range. Free T4 was associated with a decrease in DXA-derived body fat and bone mineral density. Furthermore, offspring PAX8 methylation was associated with periconceptional maternal nutrition, and methylation variability was influenced by genotype, suggesting that sensitivity to environmental exposures may be under partial genetic control. Together, our results demonstrate a possible link between early environment, PAX8 gene methylation and thyroid gland development and function, with potential implications for early embryonic programming of thyroid-related health and disease

    Combining micro-RNA and protein sequencing to detect robust biomarkers for Graves’ disease and orbitopathy

    Get PDF
    Graves’ Disease (GD) is an autoimmune condition in which thyroid-stimulating antibodies (TRAB) mimic thyroid-stimulating hormone function causing hyperthyroidism. 5% of GD patients develop inflammatory Graves’ orbitopathy (GO) characterized by proptosis and attendant sight problems. A major challenge is to identify which GD patients are most likely to develop GO and has relied on TRAB measurement. We screened sera/plasma from 14 GD, 19 GO and 13 healthy controls using high-throughput proteomics and miRNA sequencing (Illumina’s HiSeq2000 and Agilent-6550 Funnel quadrupole-time-of-flight mass spectrometry) to identify potential biomarkers for diagnosis or prognosis evaluation. Euclidean distances and differential expression (DE) based on miRNA and protein quantification were analysed by multidimensional scaling (MDS) and multinomial regression respectively. We detected 3025 miRNAs and 1886 proteins and MDS revealed good separation of the 3 groups. Biomarkers were identified by combined DE and Lasso-penalized predictive models; accuracy of predictions was 0.86 (±0:18), and 5 miRNA and 20 proteins were found including Zonulin, Alpha-2 macroglobulin, Beta-2 glycoprotein 1 and Fibronectin. Functional analysis identified relevant metabolic pathways, including hippo signaling, bacterial invasion of epithelial cells and mRNA surveillance. Proteomic and miRNA analyses, combined with robust bioinformatics, identified circulating biomarkers applicable to diagnose GD, predict GO disease status and optimize patient management
    • …
    corecore