606 research outputs found

    New dynamics in cerebellar Purkinje cells: torus canards

    Full text link
    We describe a transition from bursting to rapid spiking in a reduced mathematical model of a cerebellar Purkinje cell. We perform a slow-fast analysis of the system and find that -- after a saddle node bifurcation of limit cycles -- the full model dynamics follow temporarily a repelling branch of limit cycles. We propose that the system exhibits a dynamical phenomenon new to realistic, biophysical applications: torus canards.Comment: 4 pages; 4 figures (low resolution); updated following peer-review: language and definitions updated, Figures 1 and 4 updated, typos corrected, references added and remove

    Behavior study of pipes after forming, coating and bending

    Get PDF
    A study of the main types of coatings and its processes that modern industry commonly apply to prevent to the corrosion due to the environmental effects to energetic market pipelines have been done. Extracting main time and temperature range values, coating heat treatment recreation have been applied to x65 pipelines steel grade samples obtained from a pipe which was formed using UOE forming process. Experimental tensile tests and Charpy V-Notch Impact test have been carried out for a deeply knowledge of the influence on the steel once this recreations are applied. The Yield Strength and toughness have been improved despite lower values in rupture strain and ductile-brittle temperature transition have been obtained. Finite Element Method have been applied to simulate the entirely pipe cold bending process to predict the mechanical properties and behaviour of the pipe made from x65 steel grade under different conditions.L'estudi dels tipus de recobriments i processos principals que la indústria moderna actual aplica per tal de prevenir la corrosió degut als efectes mediambientals sobre les canonades usades en el sector energètic ha sigut realitzat. Extraient els principals rangs de valors de temps i temperatura, la recreació dels tractaments tèrmics dels processos de recobriment han sigut aplicats sobre acer de tuberies x65 obtingut d'una canonada fabricada utilitzant el procés UOE de fabricació. Tests experimentals de tracció i d'impacte Charpy amb entalla en V han sigut realitzats per tal d'obtenir un profund coneixement de la seva influència en l'acer un cop aplicats aquests tractaments tèrmics. El límit elàstic i la tenacitat han sigut millorades malgrat valors més baixos de deformació última i de temperatura de transició fragil-dúctil han sigut obtinguts. Mètodes d'elements Finits han sigut aplicats per tal de simular el procés complet de flexió en fred de canonades per tal de predir les propietats mecàniques finals així com el comportament de la canonada feta d'acer x65 sota diferents condicions.Nota: Aquest document conté originàriament altre material i/o programari només consultable a la Biblioteca de Ciència i Tecnologia

    Transmission of Information in Active Networks

    Full text link
    Shannon's Capacity Theorem is the main concept behind the Theory of Communication. It says that if the amount of information contained in a signal is smaller than the channel capacity of a physical media of communication, it can be transmitted with arbitrarily small probability of error. This theorem is usually applicable to ideal channels of communication in which the information to be transmitted does not alter the passive characteristics of the channel that basically tries to reproduce the source of information. For an {\it active channel}, a network formed by elements that are dynamical systems (such as neurons, chaotic or periodic oscillators), it is unclear if such theorem is applicable, once an active channel can adapt to the input of a signal, altering its capacity. To shed light into this matter, we show, among other results, how to calculate the information capacity of an active channel of communication. Then, we show that the {\it channel capacity} depends on whether the active channel is self-excitable or not and that, contrary to a current belief, desynchronization can provide an environment in which large amounts of information can be transmitted in a channel that is self-excitable. An interesting case of a self-excitable active channel is a network of electrically connected Hindmarsh-Rose chaotic neurons.Comment: 15 pages, 5 figures. submitted for publication. to appear in Phys. Rev.

    Cost and energy efficient reconfigurable embedded platform using Spartan-6 FPGAs

    Get PDF
    Modern FPGAs with run-time reconfiguration allow the implementation of complex systems offering both the flexibility of software-based solutions combined with the performance of hardware. This combination of characteristics, together with the development of new specific methodologies, make feasible to reach new points of the system design space, and make embedded systems built on these platforms acquire more and more importance. However, the practical exploitation of this technique in fields that traditionally have relied on resource restricted embedded systems, is mainly limited by strict power consumption requirements, the cost and the high dependence of DPR techniques with the specific features of the device technology underneath. In this work, we tackle the previously reported problems, designing a reconfigurable platform based on the low-cost and low-power consuming Spartan-6 FPGA family. The full process to develop the platform will be detailed in the paper from scratch. In addition, the implementation of the reconfiguration mechanism, including two profiles, is reported. The first profile is a low-area and low-speed reconfiguration engine based mainly on software functions running on the embedded processor, while the other one is a hardware version of the same engine, implemented in the FPGA logic. This reconfiguration hardware block has been originally designed to the Virtex-5 family, and its porting process will be also described in this work, facing the interoperability problem among different families

    Climbing Fiber Burst Size and Olivary Sub-threshold Oscillations in a Network Setting

    Get PDF
    The inferior olivary nucleus provides one of the two main inputs to the cerebellum: the so-called climbing fibers. Activation of climbing fibers is generally believed to be related to timing of motor commands and/or motor learning. Climbing fiber spikes lead to large all-or-none action potentials in cerebellar Purkinje cells, overriding any other ongoing activity and silencing these cells for a brief period of time afterwards. Empirical evidence shows that the climbing fiber can transmit a short burst of spikes as a result of an olivary cell somatic spike, potentially increasing the information being transferred to the cerebellum per climbing fiber activation. Previously reported results from in vitro studies suggested that the information encoded in the climbing fiber burst is related to the occurrence of the spike relative to the ongoing sub-threshold membrane potential oscillation of the olivary cell, i.e. that the phase of the oscillation is reflected in the size of the climbing fiber burst. We used a detailed three-compartmental model of an inferior olivary cell to further investigate the possible factors determining the size of the climbing fiber burst. Our findings suggest that the phase-dependency of the burst size is present but limited and that charge flow between soma and dendrite is a major determinant of the climbing fiber burst. From our findings it follows that phenomena such as cell ensemble synchrony can have a big effect on the climbing fiber burst size through dendrodendritic gap-junctional coupling between olivary cells

    Electrophysiological Characterization of The Cerebellum in the Arterially Perfused Hindbrain and Upper Body of The Rat

    Get PDF
    In the present study, a non-pulsatile arterially perfused hindbrain and upper body rat preparation is described which is an extension of the brainstem preparation reported by Potts et al., (Brain Res Bull 53(1):59–67), 1. The modified in situ preparation allows study of cerebellar function whilst preserving the integrity of many of its interconnections with the brainstem, upper spinal cord and the peripheral nervous system of the head and forelimbs. Evoked mossy fibre, climbing fibre and parallel fibre field potentials and EMG activity elicited in forelimb biceps muscle by interpositus stimulation provided evidence that both cerebellar inputs and outputs remain operational in this preparation. Similarly, the spontaneous and evoked single unit activity of Purkinje cells, putative Golgi cells, molecular interneurones and cerebellar nuclear neurones was similar to activity patterns reported in vivo. The advantages of the preparation include the ability to record, without the complications of anaesthesia, stabile single unit activity for extended periods (3 h or more), from regions of the rat cerebellum that are difficult to access in vivo. The preparation should therefore be a useful adjunct to in vitro and in vivo studies of neural circuits underlying cerebellar contributions to movement control and motor learning
    • …
    corecore