251 research outputs found

    De la prensa a las apps. Un recorrido por la comunicación de los riesgos naturales en la prensa escrita y el papel de las nuevas tecnologías

    Get PDF
    Es conocido el uso de la prensa como fuente de información y del impacto social que los fenómenos naturales provocan. También se considera útil la prensa como un indicador de la percepción social. Con el fin de analizar estos aspectos, se ha construido una base de datos en ACCESS, PRESSGAMA, con más de 16.500 noticias publicadas en la prensa escrita. PRESSGAMA contiene noticias relacionadas con desastres naturales y cambio climático para el periodo 1981-2010 a partir de una actualización sistemática para el diario La Vanguardia, uno de los más importantes en Cataluña. Para cada una de las noticias se ha creado una ficha completa con información como el titular, la fecha de publicación, la disposición y extensión, palabras clave e información sobre el episodio. A partir de esta información se ha analizado la evolución de las noticias y el tratamiento que se le ha dado a los riesgos naturales a lo largo de este periodo de tiempo. Además, se han identificado diferentes factores que influyen en la cobertura informativa y la percepción de estos eventos. La aparición de los medios digitales y las redes sociales ha supuesto grandes cambios en la comunicación del riesgo. Actualmente cuando se produce un desastre la cobertura informativa es muy elevada y prácticamente instantánea. La ciudadanía ha pasado a tener un papel más activo y protagonista, desde ser únicamente receptores a difundir e incluso generar nuevas noticias. En el campo de la comunicación de los riesgos naturales esta cuestión genera retos y oportunidades. Por esta razón también se ha analizado el papel de internet, las redes sociales y aplicaciones móviles en la comunicación del riesgo. Como ejemplo se presentará el caso de la aplicación FLOODUP, una aplicación para compartir información sobre inundaciones

    An analysis of the evolution of hydrometeorological extremes in newspapers: the case of Catalonia, 1982–2006

    Get PDF
    This contribution analyzes the evolution of perception of certain natural hazards over the past 25 years in a Mediterranean region. Articles from newspapers have been used as indicator. To this end a specific Spanish journal has been considered and an ACCESS database has been created with the summarized information from each news item. The database includes data such as the location of each specific article in the newspaper, its length, the number of pictures and figures, the headlines and a summary of the published information, including all the instrumental data. The study focused on hydrometeorological extremes, mainly floods and droughts, in the northeast of the Iberian Peninsula. The number of headlines per event, trends and other data have been analyzed and compared with "measured" information, in order to identify any bias that could lead to an erroneous perception of the phenomenon. The SPI index (a drought index based on standardized accumulated precipitation) has been calculated for the entire region, and has been used for the drought analysis, while a geodatabase implemented on a GIS built for all the floods recorded in Catalonia since 1900 (INUNGAMA) has been used to analyze flood evolution. Results from a questionnaire about the impact of natural hazards in two specific places have been also used to discuss the various perceptions between rural and urban settings. Results show a better correlation between the news about drought or water scarcity and SPI than between news on floods in Catalonia and the INUNGAMA database. A positive trend has been found for non-catastrophic floods, which is explained by decrease of the perception thresholds, the increase of population density in the most flood-prone areas and changes in land use

    A methodology for the classification of convective structures using meteorological radar: Application to heavy rainfall events on the Mediterranean coast of the Iberian Peninsula

    Get PDF
    During the period 1996–2000, forty-three heavy rainfall events have been detected in the Internal Basins of Catalonia (Northeastern of Spain). Most of these events caused floods and serious damage. This high number leads to the need for a methodology to classify them, on the basis of their surface rainfall distribution, their internal organization and their physical features. The aim of this paper is to show a methodology to analyze systematically the convective structures responsible of those heavy rainfall events on the basis of the information supplied by the meteorological radar. The proposed methodology is as follows. Firstly, the rainfall intensity and the surface rainfall pattern are analyzed on the basis of the raingauge data. Secondly, the convective structures at the lowest level are identified and characterized by using a 2-D algorithm, and the convective cells are identified by using a 3-D procedure that looks for the reflectivity cores in every radar volume. Thirdly, the convective cells (3-D) are associated with the 2-D structures (convective rainfall areas). This methodology has been applied to the 43 heavy rainfall events using the meteorological radar located near Barcelona and the SAIH automatic raingauge network

    Flash-floods in Catalonia: the social perception in a context of changing vulnerability

    Get PDF
    In assessing a flood event two risk components need to be considered: the intrinsic hazard of the hydrome- teorological event causing the flood and the vulnerability of the area where the precipitation has been registered. In the present study four flood events selected by the FLASH Eu- ropean project have been classified according to the charac- teristics of the meteorological event (classification according to hazard) and according to the physical and economic dam- ages caused (classification according to vulnerability). The social impact of these events is analysed taking into account the growth of the population. An increase in the number of extraordinary flash-floods was detected in the areas with a major growth of the population, as a consequence of an in- creased vulnerability of these areas, both from a physical per- spective (exposure of infrastructures) and from an economic perspective (more goods exposed). In addition, the numer- ous non-native inhabitants of the region are not aware of the meteorological risks characteristic of the area, and this con- tributes to increased social vulnerabilit

    Radar analysis of the life cycle of Mesoscale Convective Systems during the 10 June 2000 event

    Get PDF
    International audienceThe 10 June 2000 event was the largest flash flood event that occurred in the Northeast of Spain in the late 20th century, both as regards its meteorological features and its considerable social impact. This paper focuses on analysis of the structures that produced the heavy rainfalls, especially from the point of view of meteorological radar. Due to the fact that this case is a good example of a Mediterranean flash flood event, a final objective of this paper is to undertake a description of the evolution of the rainfall structure that would be sufficiently clear to be understood at an interdisciplinary forum. Then, it could be useful not only to improve conceptual meteorological models, but also for application in downscaling models. The main precipitation structure was a Mesoscale Convective System (MCS) that crossed the region and that developed as a consequence of the merging of two previous squall lines. The paper analyses the main meteorological features that led to the development and triggering of the heavy rainfalls, with special emphasis on the features of this MCS, its life cycle and its dynamic features. To this end, 2-D and 3-D algorithms were applied to the imagery recorded over the complete life cycle of the structures, which lasted approximately 18 h. Mesoscale and synoptic information were also considered. Results show that it was an NS-MCS, quasi-stationary during its stage of maturity as a consequence of the formation of a convective train, the different displacement directions of the 2-D structures and the 3-D structures, including the propagation of new cells, and the slow movement of the convergence line associated with the Mediterranean mesoscale low

    Estimation of extreme flash flood evolution in Barcelona County from 1351 to 2005

    No full text
    International audienceEvery year, flash floods cause economic losses and major problems for undertaking daily activity in the Catalonia region (NE Spain). Sometimes catastrophic damage and casualties occur. When a long term analysis of floods is undertaken, a question arises regarding the changing role of the vulnerability and the hazard in risk evolution. This paper sets out to give some information to deal with this question, on the basis of analysis of all the floods that have occurred in Barcelona county (Catalonia) since the 14th century, as well as the flooded area, urban evolution, impacts and the weather conditions for any of most severe events. With this objective, the identification and classification of historical floods, and characterisation of flash-floods among these, have been undertaken. Besides this, the main meteorological factors associated with recent flash floods in this city and neighbouring regions are well-known. On the other hand, the identification of rainfall trends that could explain the historical evolution of flood hazard occurrence in this city has been analysed. Finally, identification of the influence of urban development on the vulnerability to floods has been carried out. Barcelona city has been selected thanks to its long continuous data series (daily rainfall data series, since 1854; one of the longest rainfall rate series of Europe, since 1921) and for the accurate historical archive information that is available (since the Roman Empire for the urban evolution). The evolution of flood occurrence shows the existence of oscillations in the earlier and later modern-age periods that can be attributed to climatic variability, evolution of the perception threshold and changes in vulnerability. A great increase of vulnerability can be assumed for the period 1850?1900. The analysis of the time evolution for the Barcelona rainfall series (1854?2000) shows that no trend exists, although, due to changes in urban planning, flash-floods impact has altered over this time. The number of catastrophic flash floods has diminished, although the extraordinary ones have increased

    Tornadoes and waterspouts in Catalonia (1950–2009)

    Get PDF
    This paper presents a preliminary climatology of tornadoes and waterspouts in Catalonia (NE Iberian Peninsula). A database spanning 60 yr (1950–2009) has been developed on the basis of information collected from various sources such as weather reports, insurance companies, newspapers and damage surveys. This database has been subjected to a rigorous validation process, and the climatology describes its main features: timing, spatial pattern, and trends in the tornado and waterspout distribution. Results show the highest concentration of tornadoes from August to October, the highest density in the heavily populated coastal areas and a growing positive trend that is likely more closely linked to an increase in observation and perception rather than a real climatic trend

    Extreme flash floods in Barcelona County

    Get PDF
    In this paper the catastrophic and extraordinary floods occurring in Barcelona County (Catalonia, NE Spain) are studied, in order to characterise the temporal evolution of extreme flash floods in that area and their main features. These events usually cause economical losses and major problems for undertaking daily activity in Barcelona city. This kind of floods is a very common feature in the North-east of Spain and they are recorded every year in some point of Catalonia. This contribution also shows the frequency of those events, within the framework of all the floods that have occurred in Barcelona since the 14th century, but also describes the flooded area, urban evolution, impacts and the weather conditions for any of most severe events. The evolution of flood occurrence shows the existence of oscillations in the earlier and later modern age periods that can be attributed to climatic variability, evolution of the perception threshold and changes in vulnerability. A great increase of vulnerability can be assumed for the period 1850-1900. The analysis of the time evolution for the Barcelona rainfall series (1854-2000) shows that no trend exists, although, due to the changes in urban planning, flash-floods impact has changed over this time. The number of catastrophic flash floods has diminished, although the extraordinary ones have increased

    The cases of June 2000, November 2002 and September 2002 as examples of Mediterranean floods

    Get PDF
    International audienceFour flood events that affected three different countries are here described in terms of meteorological genesis and in terms of consequences on the population and on the territory. Each event is a good representative of a class of phenomena that produce important effects on the urban and extra-urban tissue and that must be taken into account in an optic of civil protection and risk evaluation. This is the subject of the HYDROPTIMET project, part of the Interreg IIIB program, which is collocated in the framework of the prevention of natural hazards and, in particular, those related to severe meteo-hydrological events. This paper aims at being a general introduction of the four events which are the subject of more detailed studies, already published or under submission
    corecore