227 research outputs found

    Molecular analysis of the TMPRSS3 gene in Moroccan families with non-syndromic hearing loss

    Get PDF
    Autosomal recessive non-syndromic hearing impairment (ARNSHI) is the most common type of inherited hearing impairment, accounting for approximately 80% of inherited prelingual hearing impairment. Hearing loss is noted to be both phenotypically and genetically heterogeneous. Mutations in the TMPRSS3 gene, which encodes a transmembrane serine protease, are known to cause autosomal recessive non-syndromic hearing impairment DFNB8/10. In order to elucidate if the TMPRSS3 gene is responsible for ARNSHI in 80 Moroccan families with non-syndromic hearing impairment, the gene was sequenced using DNA samples from these families. Nineteen TMPRSS3 variants were found, nine are located in the exons among which six are missense and three are synonymous. The 10 remaining variations are located in non-coding regions. Missense variants analysis show that they do not have a significant pathogenic effect on protein while pathogenicity of some variant remains under discussion. Thus we show that the TMPRSS3 gene is not a major contributor to non-syndromic deafness in the Moroccan population

    Analysis of CLDN14 gene in deaf Moroccan patients with non-syndromic hearing loss

    Get PDF
    Mutations in the CLDN14 gene, encoding the tight junction claudin 14 protein has been reported to date in an autosomal recessive form of isolated hearing loss DFNB29. In order to identify the contribution of CLDN14 to inherited deafness in Moroccan population, we performed a genetic analysis of this gene in 80 Moroccan familial cases. Our results show the presence of 7 mutations: 6 being conservative and one leading to a missense mutation (C11T) which was found at heterozygous and homozygous states, with a general frequency of 6.87%. The pathogenicity of the resulting T4M substitution is under discussion. Finally, our study suggests that CLDN14 gene can be implicated in the development of hearing loss in the Moroccan population

    Adaptations in mitochondrial function parallel, but fail to rescue, the transition to severe hyperglycemia and hyperinsulinemia: a study in Zucker diabetic fatty rats.

    Get PDF
    Cross-sectional human studies have associated mitochondrial dysfunction to type 2 diabetes. We chose Zucker diabetic fatty (ZDF) rats as a model of progressive insulin resistance to examine whether intrinsic mitochondrial defects are required for development of type 2 diabetes. Muscle mitochondrial function was examined in 6-, 12-, and 19-week-old ZDF (fa/fa) and fa/+ control rats (n = 8-10 per group) using respirometry with pyruvate, glutamate, and palmitoyl-CoA as substrates. Six-week-old normoglycemic-hyperinsulinemic fa/fa rats had reduced mitochondrial fat oxidative capacity. Adenosine diphosphate (ADP)-driven state 3 and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)-stimulated state uncoupled (state u) respiration on palmitoyl-CoA were lower compared to controls (62.3 ± 9.5 vs. 119.1 ± 13.8 and 87.8 ± 13.3 vs. 141.9 ± 14.3 nmol O2/mg/min.). Pyruvate oxidation in 6-week-old fa/fa rats was similar to controls. Remarkably, reduced fat oxidative capacity in 6-week-old fa/fa rats was compensated for by an adaptive increase in intrinsic mitochondrial function at week 12, which could not be maintained toward week 19 (140.9 ± 11.2 and 57.7 ± 9.8 nmol O2/mg/min, weeks 12 and 19, respectively), whereas hyperglycemia had developed (13.5 ± 0.6 and 16.1 ± 0.3 mmol/l, weeks 12 and 19, respectively). This mitochondrial adaptation failed to rescue the progressive development of insulin resistance in fa/fa rats. The transition of prediabetes state toward advanced hyperglycemia and hyperinsulinemia was accompanied by a blunted increase in uncoupling protein-3 (UCP3). Thus, in ZDF rats insulin resistance develops progressively in the absence of mitochondrial dysfunction. In fact, improved mitochondrial capacity in hyperinsulinemic hyperglycemic rats does not rescue the progression toward advanced stages of insulin resistance

    Mediterranean Founder Mutation Database (MFMD): Taking Advantage from Founder Mutations in Genetics Diagnosis, Genetic Diversity and Migration History of the Mediterranean Population

    Get PDF
    The Mediterranean basin has been the theater of migration crossroads followed by settlement of several societies and cultures in prehistoric and historical times, with important consequences on genetic and genomic determinisms. Here, we present the Mediterranean Founder Mutation Database (MFMD), established to offer web-based access to founder mutation information in the Mediterranean population. Mutation data were collected from the literature and other online resources and systematically reviewed and assembled into this database. The information provided for each founder mutation includes DNA change, amino-acid change, mutation type and mutation effect, as well as mutation frequency and coalescence time when available. Currently, the database contains 383 founder mutations found in 210 genes related to 219 diseases. We believe that MFMD will help scientists and physicians to design more rapid and less expensive genetic diagnostic tests. Moreover, the coalescence time of founder mutations gives an overview about the migration history of the Mediterranean population. MFMD can be publicly accessed from http://mfmd.pasteur.ma

    Why mitochondria must fuse to maintain their genome integrity

    Get PDF
    SIGNIFICANCE: The maintenance of mitochondrial genome integrity is a major challenge for cells to sustain energy production by respiration. RECENT ADVANCES: Recently, mitochondrial membrane dynamics emerged as a key process contributing to prevent mitochondrial DNA (mtDNA) alterations. Indeed, both fundamental and clinical data suggest that disruption of mitochondrial fusion, related to mutations in the OPA1, MFN2, PINK1, and PARK2 genes, leads to the accumulation of mutations in the mitochondrial genome. CRITICAL ISSUES: We discuss here the possibility that mitochondrial fusion acts as a direct mechanism to prevent the generation of altered mtDNA and to eliminate mutated deleterious genomes either by trans-complementation or by mitophagy. FUTURE DIRECTIONS: Finally, we conclude this review with a short evolutionary comparison between the mechanisms involved in mitochondrial and bacterial modes of genome distribution and plasticity, highlighting possible common conserved processes required for the maintenance of their genome integrity, which should inspire our future investigations

    Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity

    Get PDF
    A low fat oxidative capacity has been linked to muscle diacylglycerol (DAG) accumulation and insulin resistance. Alternatively, a low fat oxidation rate may stimulate glucose oxidation, thereby enhancing glucose disposal. Here, we investigated whether an ethyl-2-[6-(4-chlorophenoxy)hexyl]-oxirane-2-carboxylate (etomoxir)-induced inhibition of fat oxidation leads to muscle fat storage and insulin resistance. An intervention in healthy male subjects was combined with studies in human primary myotubes. Furthermore, muscle DAG and triacylglycerol (TAG), mitochondrial function, and insulin signaling were examined in etomoxir-treated C57bl6 mice. In humans, etomoxir administration increased glucose oxidation at the expense of fat oxidation. This effect was accompanied by an increased abundance of GLUT4 at the sarcolemma and a lowering of plasma glucose levels, indicative of improved glucose homeostasis. In mice, etomoxir injections resulted in accumulation of muscle TAG and DAG, yet improved insulin-stimulated GLUT4 translocation. Also in human myotubes, insulin signaling was improved by etomoxir, in the presence of increased intramyocellular lipid accumulation. These insulin-sensitizing effects in mice and human myotubes were accompanied by increased phosphorylation of AMP-activated protein kinase (AMPK). Our results show that a reduction in fat oxidation leading to accumulation of muscle DAG does not necessarily lead to insulin resistance, as the reduction in fat oxidation may activate AMPK

    A novel mutation of AFG3L2 might cause dominant optic atrophy in patients with mild intellectual disability

    Get PDF
    Dominant optic neuropathies causing fiber loss in the optic nerve are among the most frequent inherited mitochondrial diseases. In most genetically resolved cases, the disease is associated to a mutation in OPA1, which encodes an inner mitochondrial dynamin involved in network fusion, cristae structure and mitochondrial genome maintenance. OPA1 cleavage is regulated by two m-AAA proteases, SPG7 and AFG3L2, which are, respectively involved in Spastic Paraplegia 7 and Spino-Cerebellar Ataxia 28. Here, we identified a novel mutation c.1402C>T in AFG3L2, modifying the arginine 468 in cysteine in an evolutionary highly conserved arginine-finger motif, in a family with optic atrophy and mild intellectual disability. Ophthalmic examinations disclosed a loss of retinal nerve fibers on the temporal and nasal sides of the optic disk and a red-green dyschromatopsia. Thus, our results suggest that neuro-ophthalmological symptom as optic atrophy might be associated with AFG3L2 mutations, and should prompt the screening of this gene in patients with isolated and syndromic inherited optic neuropathies

    The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model

    Get PDF
    Ketogenic Diet used to treat refractory epilepsy for almost a century may represent a treatment option for mitochondrial disorders for which effective treatments are still lacking. Mitochondrial complex I deficiencies are involved in a broad spectrum of inherited diseases including Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes syndrome leading to recurrent cerebral insults resembling strokes and associated with a severe complex I deficiency caused by mitochondrial DNA (mtDNA) mutations. The analysis of MELAS neuronal cybrid cells carrying the almost homoplasmic m.3243A>G mutation revealed a metabolic switch towards glycolysis with the production of lactic acid, severe defects in respiratory chain activity and complex I disassembly with an accumulation of assembly intermediates. Metabolites, NADH/NAD ratio, mitochondrial enzyme activities, oxygen consumption and BN-PAGE analysis were evaluated in mutant compared to control cells. A severe complex I enzymatic deficiency was identified associated with a major complex I disassembly with an accumulation of assembly intermediates of 400kDa. We showed that Ketone Bodies (KB) exposure for 4weeks associated with glucose deprivation significantly restored complex I stability and activity, increased ATP synthesis and reduced the NADH/NAD+ ratio, a key component of mitochondrial metabolism. In addition, without changing the mutant load, mtDNA copy number was significantly increased with KB, indicating that the absolute amount of wild type mtDNA copy number was higher in treated mutant cells. Therefore KB may constitute an alternative and promising therapy for MELAS syndrome, and could be beneficial for other mitochondrial diseases caused by complex I deficiency

    OPA1: 516 unique variants and 831 patients registered in an updated centralized Variome database

    Get PDF
    BACKGROUND: The dysfunction of OPA1, a dynamin GTPase involved in mitochondrial fusion, is responsible for a large spectrum of neurological disorders, each of which includes optic neuropathy. The database dedicated to OPA1 ( https://www.lovd.nl/OPA1 ), created in 2005, has now evolved towards a centralized and more reliable database using the Global Variome shared Leiden Open-source Variation Database (LOVD) installation. RESULTS: The updated OPA1 database, which registers all the patients from our center as well as those reported in the literature, now covers a total of 831 patients: 697 with isolated dominant optic atrophy (DOA), 47 with DOA "plus", and 83 with asymptomatic or unclassified DOA. It comprises 516 unique OPA1 variants, of which more than 80% (414) are considered pathogenic. Full clinical data for 118 patients are documented using the Human Phenotype Ontology, a standard vocabulary for referencing phenotypic abnormalities. Contributors may now make online submissions of phenotypes related to OPA1 mutations, giving clinical and molecular descriptions together with detailed ophthalmological and neurological data, according to an international thesaurus. CONCLUSIONS: The evolution of the OPA1 database towards the LOVD, using unified nomenclature, should ensure its interoperability with other databases and prove useful for molecular diagnoses based on gene-panel sequencing, large-scale mutation statistics, and genotype-phenotype correlations
    corecore