69 research outputs found

    Approximation of holomorphic mappings on strongly pseudoconvex domains

    Full text link
    Let D be a relatively compact strongly pseudoconvex domain in a Stein manifold, and let Y be a complex manifold. We prove that the set A(D,Y), consisting of all continuous maps from the closure of D to Y which are holomorphic in D, is a complex Banach manifold. When D is the unit disc in C (or any other topologically trivial strongly pseudoconvex domain in a Stein manifold), A(D,Y) is locally modeled on the Banach space A(D,C^n)=A(D)^n with n=dim Y. Analogous results hold for maps which are holomorphic in D and of class C^r up to the boundary for any positive integer r. We also establish the Oka property for sections of continuous or smooth fiber bundles over the closure of D which are holomorphic over D and whose fiber enjoys the Convex approximation property. The main analytic technique used in the paper is a method of gluing holomorphic sprays over Cartan pairs in Stein manifolds, with control up to the boundary, which was developed in our paper "Holomorphic curves in complex manifolds" (Duke Math. J. 139 (2007), no. 2, 203--253)

    SilviLaser

    Get PDF

    Sample Handling and Chemical Kinetics in an Acoustically Levitated Drop Microreactor

    Get PDF
    Accurate measurement of enzyme kinetics is an essential part of understanding the mechanisms of biochemical reactions. The typical means of studying such systems use stirred cuvettes, stopped-flow apparatus, microfluidic systems, or other small sample containers. These methods may prove to be problematic if reactants or products adsorb to or react with the container’s surface. As an alternative approach, we have developed an acoustically-levitated drop reactor eventually intended to study enzyme-catalyzed reaction kinetics related to free radical and oxidative stress chemistry. Microliter-scale droplet generation, reactant introduction, maintenance, and fluid removal are all important aspects in conducting reactions in a levitated drop. A three capillary bundle system has been developed to address these needs. We report kinetic measurements for both luminol chemiluminescence and the reaction of pyruvate with nicotinamide adenine dinucleotide, catalyzed by lactate dehydrogenase, to demonstrate the feasibility of using a levitated drop in conjunction with the developed capillary sample handling system as a microreactor

    Amelogenin Nanoparticles in Suspension: Deviations from Spherical Shape and pH-Dependent Aggregation

    Get PDF
    It is well-known that amelogenin self-assembles to form nanoparticles, usually referred to as amelogenin nanospheres, despite the fact that not much is known about their actual shape in solution. In the current paper, we combine SAXS and DLS to study the three-dimensional shape of the recombinant amelogenins rP172 and rM179. Our results show for the first time that amelogenins build oblate nanoparticles in suspension using experimental approaches that do not require the proteins to be in contact with a support material surface. The SAXS studies give evidence for the existence of isolated amelogenin nano-oblates with aspect ratios in the range of 0.45-0.5 at pH values higher than pH 7.2 and show an aggregation of these nano-oblates at lower pH values. The role of the observed oblate shape in the formation of chain-like structures at physiological conditions is discussed as a key factor in the biomineralization of dental enamel

    The Laegeren site: an augmented forest laboratory combining 3-D reconstruction and radiative transfer models for trait-based assessment of functional diversity

    Full text link
    Given the increased pressure on forests and their diversity in the context of global change, new ways of monitoring diversity are needed. Remote sensing has the potential to inform essential biodiversity variables on the global scale, but validation of data and products, particularly in remote areas, is difficult. We show how radiative transfer (RT) models, parameterized with a detailed 3-D forest reconstruction based on laser scanning, can be used to upscale leaf-level information to canopy scale. The simulation approach is compared with actual remote sensing data, showing very good agreement in both the spectral and spatial domains. In addition, we compute a set of physiological and morphological traits from airborne imaging spectroscopy and laser scanning data and show how these traits can be used to estimate the functional richness of a forest at regional scale. The presented RT modeling framework has the potential to prototype and validate future spaceborne observation concepts aimed at informing variables of biodiversity, while the trait-based mapping of diversity could augment in situ networks of diversity, providing effective spatiotemporal gap filling for a comprehensive assessment of changes to diversity

    Non-contact universal sample presentation for room temperature macromolecular crystallography using acoustic levitation

    Get PDF
    Macromolecular Crystallography is a powerful and valuable technique to assess protein structures. Samples are commonly cryogenically cooled to minimise radiation damage effects from the X-ray beam, but low temperatures hinder normal protein functions and this procedure can introduce structural artefacts. Previous experiments utilising acoustic levitation for beamline science have focused on Langevin horns which deliver significant power to the confined droplet and are complex to set up accurately. In this work, the low power, portable TinyLev acoustic levitation system is used in combination with an approach to dispense and contain droplets, free of physical sample support to aid protein crystallography experiments. This method facilitates efficient X-ray data acquisition in ambient conditions compatible with dynamic studies. Levitated samples remain free of interference from fixed sample mounts, receive negligible heating, do not suffer significant evaporation and since the system occupies a small volume, can be readily installed at other light sources

    Andreotti-Grauert theory by integral formulas

    No full text
    corecore