56 research outputs found

    A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations

    Get PDF
    A significant fraction of liquid clouds are not captured in existing CloudSat radar-based products because the clouds are masked by surface clutter or have insufficient reflectivities. To account for these missing clouds, we train a random forest regression model to predict cloud optical depth and cloud top effective radius from other CloudSat and CALIPSO observables that do not include the radar reflectivity profile. By assuming a subadiabatic cloud model, we are then able to retrieve a vertical profile of cloud microphysical properties for all liquid-phase oceanic clouds that are detected by CALIPSO's lidar but missed by CloudSat's radar. Daytime estimates of cloud optical depth, cloud top effective radius, and cloud liquid water path are robustly correlated with coincident estimates from the MODIS instrument on board the Aqua satellite. This new algorithm offers a promising path forward for estimating the water contents of thin liquid clouds observed by CloudSat and CALIPSO at night, when MODIS observations that rely upon reflected sunlight are not available.</p

    Multifrequency radar observations of marine clouds during the EPCAPE campaign

    Get PDF
    The Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE) was a year-round campaign conducted by the US Department of Energy at the Scripps Institution of Oceanography in La Jolla, CA, USA, with a focus on characterizing atmospheric processes at a coastal location. The ground-based prototype of a new Ka-, W-, and G-band (35.75, 94.88, and 238.8 GHz) profiling atmospheric radar, named CloudCube, which was developed at the Jet Propulsion Laboratory, took part in the experiment during 6 weeks in March and April 2023. This article describes the unique data sets that were obtained during the field campaign from a variety of marine clouds and light precipitation. These are, to the best of the authors' knowledge, the first observations of atmospheric clouds using simultaneous multifrequency measurements including 238.8 GHz. These data sets therefore provide an exceptional opportunity to study and analyze hydrometeors with diameters in the millimeter- and submillimeter size range that can be used to better understand cloud and precipitation structure, formation, and evolution. The data sets referenced in this article are intended to provide a complete, extensive, and high-quality collection of G-band data in the form of Doppler spectra and Doppler moments. In addition, Ka-band and W-band reflectivity and Ka-, W-, and G-band reflectivity ratio profiles are included for several cases of interest on 6 different days. The data sets can be found at https://doi.org/10.5281/zenodo.10076227 (Socuellamos et al., 2024).</p

    Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer

    Get PDF
    This paper introduces the OCO2CLD-LIDAR-AUX product, which uses the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar and the Orbiting Carbon Observatory-2 (OCO-2) hyperspectral A-band spectrometer. CALIPSO provides a prior cloud top pressure (Ptop) for an OCO-2-based retrieval of cloud optical depth, Ptop and cloud geometric thickness expressed in hPa. Measurements are of single-layer liquid clouds over oceans from September 2014 to December 2016 when collocated data are available. Retrieval performance is best for solar zenith angles&thinsp;&lt;45∘ and when the cloud phase classification, which also uses OCO-2's weak CO2 band, is more confident. The highest quality optical depth retrievals agree with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) with discrepancies smaller than the MODIS-reported uncertainty. Retrieved thicknesses are consistent with a substantially subadiabatic structure over marine stratocumulus regions, in which extinction is weighted towards the cloud top. Cloud top pressure in these clouds shows a 4&thinsp;hPa bias compared with CALIPSO which we attribute mainly to the assumed vertical structure of cloud extinction after showing little sensitivity to the presence of CALIPSO-identified aerosol layers or assumed cloud droplet effective radius. This is the first case of success in obtaining internal cloud structure from hyperspectral A-band measurements and exploits otherwise unused OCO-2 data. This retrieval approach should provide additional constraints on satellite-based estimates of cloud droplet number concentration from visible imagery, which rely on parameterization of the cloud thickness.</p

    Boundary-layer water vapor profiling using differential absorption radar

    Get PDF
    Remote sensing of water vapor in the presence of clouds and precipitation constitutes an important observational gap in the global observing system. We present ground-based measurements using a new radar instrument operating near the 183&thinsp;GHz H2O line for profiling water vapor inside of planetary-boundary-layer clouds, and develop an error model and inversion algorithm for the profile retrieval. The measurement technique exploits the strong frequency dependence of the radar beam attenuation, or differential absorption, on the low-frequency flank of the water line in conjunction with the radar's ranging capability to acquire range-resolved humidity information. By comparing the measured differential absorption coefficient with a millimeter-wave propagation model, we retrieve humidity profiles with 200&thinsp;m resolution and typical statistical uncertainty of 0.6&thinsp;g&thinsp;m−3 out to around 2&thinsp;km. This value for humidity uncertainty corresponds to measurements in the high-SNR (signal-to-noise ratio) limit, and is specific to the frequency band used. The measured spectral variation of the differential absorption coefficient shows good agreement with the model, supporting both the measurement method assumptions and the measurement error model. By performing the retrieval analysis on statistically independent data sets corresponding to the same observed scene, we demonstrate the reproducibility of the measurement. An important trade-off inherent to the measurement method between retrieved humidity precision and profile resolution is discussed.</p

    Numerical simulations of stratocumulus cloud response to aerosol perturbation

    Get PDF
    In this paper results from the 2D numerical model with Lagrangian representation of microphysics are used to investigate the response of the radiative properties of stratocumulus as a result of adding aerosol within the boundary layer. Three different cases characterized by low, moderate and high cloud droplet number and for 3 sizes of additional aerosol 0.01. μm, 0.1. μm and 0.5. μm are discussed. The model setup is an idealization of one of the proposed Solar Radiation Management methods to mitigate global warming by increasing albedo of stratocumulus clouds. Analysis of the model results shows that: the albedo may increase directly in response to additional aerosol in the boundary layer; the magnitude of the increase depends on the microphysical properties of the existing cloud and is larger for cloud characterized by low cloud droplet number; for some cases for clouds characterized by high cloud droplet number seeding may lead to the decrease in albedo when too large radius of seeding aerosol is used

    Observing convective aggregation

    Get PDF
    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad a distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network

    The Use of Roleplay and Reinforcement Procedures in theDevelopment of Generalized Interpersonal Behavior with Emotionally Disturbed-Behavior DisorderedAdolescents in a Special Education Classroom

    No full text
    The effects of a role-playing intervention on maladaptive classroom behavior of two emotionally disturbed adolescents were investigated in the context of a multiple baseline design across behaviors. Data were collected daily, both in role playing (training) sessions and in the classroom (generalization) setting. The role-playing intervention proceeded, in successive response-dependent stages, from the training room to the classroom environment. The intervention strategy successfully altered specific maladaptive responses. Generalization in the classroom environment occurred, to some extent, in initial parts of the intervention. It increased in later stages when role playing sessions were initiated in the classroom. Following completion of the role-play intervention program, reinforcement contingencies enhanced the consistency of the effects and were necessary, initially, for maintenance of the newly acquired behaviors in the classroom. Follow-up data, taken after the termination of the study following removal of the programmed reinforcement contingencies, indicated that the reduction of maladaptive behaviors achieved during treatment continued at a near-zero rate

    Sensitivity analysis of polarimetric O<sub>2</sub> A-band spectra for potential cloud retrievals using OCO-2/GOSAT measurements

    No full text
    Clouds play a crucial role in Earth's radiative budget, yet their climate feedbacks are poorly understood. The advent of space-borne high resolution spectrometers probing the O2 A band, like GOSAT and OCO-2, could make it possible to simultaneously retrieve vertically resolved cloud parameters that play a vital role in Earth's radiative budget, thereby allowing a reduction of the corresponding uncertainty due to clouds. Such retrievals would also facilitate air mass bias reduction in corresponding measurements of CO2 columns. In this work, the hyperspectral, polarimetric response of the O2 A band to mainly three important cloud parameters, viz., optical thickness, top height and droplet size has been studied, revealing a different sensitivity to each for the varying atmospheric absorption strength within the A band. Cloud optical thickness finds greatest sensitivity in intensity measurements, the sensitivity of other Stokes parameters being limited to low cloud optical thicknesses. Cloud height had a negligible effect on intensity measurements at non-absorbing wavelengths but finds maximum sensitivity at an intermediate absorption strength, which increases with cloud height. The same is found to hold for cloud geometric thickness. The geometry-dependent sensitivity to droplet size is maximum at non-absorbing wavelengths and diminishes with increasing absorption strength. It has been shown that significantly more information on droplet size can be drawn from multi-angle measurements. We find that, in the absence of sunglint, the backscatter hemisphere (scattering angle larger than 90°) is richer in information on droplet size, especially in the glory and rainbow regions. It has been shown that I and Q generally have differing sensitivities to all cloud parameters. Thus, accurate measurements of two orthogonal components IP andIS (as in GOSAT) are expected to contain more information than measurements of only I, Ih or Iv (as in the case of OCO-2)
    • …
    corecore