3,572 research outputs found

    Hierarchy of boundary driven phase transitions in multi-species particle systems

    Full text link
    Interacting systems with KK driven particle species on a open chain or chains which are coupled at the ends to boundary reservoirs with fixed particle densities are considered. We classify discontinuous and continuous phase transitions which are driven by adiabatic change of boundary conditions. We build minimal paths along which any given boundary driven phase transition (BDPT) is observed and reveal kinetic mechanisms governing these transitions. Combining minimal paths, we can drive the system from a stationary state with all positive characteristic speeds to a state with all negative characteristic speeds, by means of adiabatic changes of the boundary conditions. We show that along such composite paths one generically encounters ZZ discontinuous and 2(KZ)2(K-Z) continuous BDPTs with ZZ taking values 0ZK0\leq Z\leq K depending on the path. As model examples we consider solvable exclusion processes with product measure states and K=1,2,3K=1,2,3 particle species and a non-solvable two-way traffic model. Our findings are confirmed by numerical integration of hydrodynamic limit equations and by Monte Carlo simulations. Results extend straightforwardly to a wide class of driven diffusive systems with several conserved particle species.Comment: 12 pages, 11 figure

    Application of approximation theory by nonlinear manifolds in Sturm-Liouville inverse problems

    Full text link
    We give here some negative results in Sturm-Liouville inverse theory, meaning that we cannot approach any of the potentials with m+1m+1 integrable derivatives on R+\mathbb{R}^+ by an ω\omega-parametric analytic family better than order of (ωlnω)(m+1)(\omega\ln\omega)^{-(m+1)}. Next, we prove an estimation of the eigenvalues and characteristic values of a Sturm-Liouville operator and some properties of the solution of a certain integral equation. This allows us to deduce from [Henkin-Novikova] some positive results about the best reconstruction formula by giving an almost optimal formula of order of ωm\omega^{-m}.Comment: 40 page

    Discriminants, symmetrized graph monomials, and sums of squares

    Full text link
    Motivated by the necessities of the invariant theory of binary forms J. J. Sylvester constructed in 1878 for each graph with possible multiple edges but without loops its symmetrized graph monomial which is a polynomial in the vertex labels of the original graph. In the 20-th century this construction was studied by several authors. We pose the question for which graphs this polynomial is a non-negative resp. a sum of squares. This problem is motivated by a recent conjecture of F. Sottile and E. Mukhin on discriminant of the derivative of a univariate polynomial, and an interesting example of P. and A. Lax of a graph with 4 edges whose symmetrized graph monomial is non-negative but not a sum of squares. We present detailed information about symmetrized graph monomials for graphs with four and six edges, obtained by computer calculations

    Thermoelectric properties of AgGaTe2_2 and related chalcopyrite structure materials

    Full text link
    We present an analysis of the potential thermoelectric performance of p-type AgGaTe2_{2}, which has already shown a ZTZT of 0.8 with partial optimization, and observe that the same band structure features, such as a mixture of light and heavy bands and isotropic transport, that lead to this good performance are present in certain other ternary chalcopyrite structure semiconductors. We find that optimal performance of AgGaTe2_2 will be found for hole concentrations between 4 ×1019\times 10^{19} and 2 ×1020\times 10^{20}cm3^{-3} at 900 K, and 2 ×1019\times 10^{19} and 1020^{20} cm3^{-3} at 700 K, and that certain other chalcopyrite semiconductors might show good thermoelectric performance at similar doping ranges and temperatures if not for higher lattice thermal conductivity

    Laser-like Instabilities in Quantum Nano-electromechanical Systems

    Full text link
    We discuss negative damping regimes in quantum nano-electromechanical systems formed by coupling a mechanical oscillator to a single-electron transistor (normal or superconducting). Using an analogy to a laser with a tunable atom-field coupling, we demonstrate how these effects scale with system parameters. We also discuss the fluctuation physics of both the oscillator and the single-electron transistor in this regime, and the degree to which the oscillator motion is coherent.Comment: 4+ pages, 1 figure; reference to the work of Dykman and Krivoglaz adde

    Dissipationless Spin Current in Anisotropic p-Doped Semiconductors

    Full text link
    Recently, dissipationless spin current has been predicted for the p-doped semiconductors with spin-orbit coupling. Here we investigate the effect of spherical symmetry breaking on the dissipationless spin current, and obtain values of the intrinsic spin Hall conductivity for realistic semiconductor band structures with cubic symmetry

    Odd Parity and Line Nodes in Non-Symmorphic Superconductors

    Full text link
    Group theory arguments have been invoked to argue that odd parity order parameters cannot have line nodes in the presence of spin-orbit coupling. In this paper we show that these arguments do not hold for certain non-symmorphic superconductors. Specifically, we demonstrate that when the underlying crystal has a twofold screw axis, half of the odd parity representations vanish on the Brillouin zone face perpendicular to this axis. Many unconventional superconductors have non-symmorphic space groups, and we discuss implications for several materials, including UPt3, UBe13, Li2Pt3B and Na4Ir3O8.Comment: 4 page

    Design and simulation of a descent controller for strategic four-dimensional aircraft navigation

    Get PDF
    A time-controlled navigation system applicable to the descent phase of flight for airline transport aircraft was developed and simulated. The design incorporates the linear discrete-time sampled-data version of the linearized continuous-time system describing the aircraft's aerodynamics. Using optimal linear quadratic control techniques, an optimal deterministic control regulator which is implementable on an airborne computer is designed. The navigation controller assists the pilot in complying with assigned times of arrival along a four-dimensional flight path in the presence of wind disturbances. The strategic air traffic control concept is also described, followed by the design of a strategic control descent path. A strategy for determining possible times of arrival at specified waypoints along the descent path and for generating the corresponding route-time profiles that are within the performance capabilities of the aircraft is presented. Using a mathematical model of the Boeing 707-320B aircraft along with a Boeing 707 cockpit simulator interfaced with an Adage AGT-30 digital computer, a real-time simulation of the complete aircraft aerodynamics was achieved. The strategic four-dimensional navigation controller for longitudinal dynamics was tested on the nonlinear aircraft model in the presence of 15, 30, and 45 knot head-winds. The results indicate that the controller preserved the desired accuracy and precision of a time-controlled aircraft navigation system

    The existence of a real pole-free solution of the fourth order analogue of the Painleve I equation

    Full text link
    We establish the existence of a real solution y(x,T) with no poles on the real line of the following fourth order analogue of the Painleve I equation, x=Ty-({1/6}y^3+{1/24}(y_x^2+2yy_{xx})+{1/240}y_{xxxx}). This proves the existence part of a conjecture posed by Dubrovin. We obtain our result by proving the solvability of an associated Riemann-Hilbert problem through the approach of a vanishing lemma. In addition, by applying the Deift/Zhou steepest-descent method to this Riemann-Hilbert problem, we obtain the asymptotics for y(x,T) as x\to\pm\infty.Comment: 27 pages, 5 figure
    corecore