4,261 research outputs found

    The local adsorption structure of benzene on Si(001)-(2 × 1): a photoelectron diffraction investigation

    Get PDF
    Scanned-energy mode C 1s photoelectron diffraction has been used to investigate the local adsorption geometry of benzene on Si(001) at saturation coverage and room temperature. The results show that two different local bonding geometries coexist, namely the 'standard butterfly' (SB) and 'tilted bridge' (TB) forms, with a composition of 58 ± 29% of the SB species. Detailed structural parameter values are presented for both species including Si–C bond lengths. On the basis of published measurements of the rate of conversion of the SB to the TB form on this surface, we estimate that the timescale of our experiment is sufficient for achieving equilibrium, and in this case our results indicate that the difference in the Gibbs free energy of adsorption, ΔG(TB)−ΔG(SB), is in the range −0.023 to +0.049 eV. We suggest, however, that the relative concentration of the two species may also be influenced by a combination of steric effects influencing the kinetics, and a sensitivity of the adsorption energies of the adsorbed SB and TB forms to the nature of the surrounding benzene molecules

    The adsorption structure of furan on Pd(1 1 1)

    Get PDF
    The structure of molecular furan, C4H4O, on Pd(1 1 1) has been investigated by O K-edge near-edge X-ray absorption fine structure (NEXAFS) and C 1s scanned-energy mode photoelectron diffraction (PhD). NEXAFS shows the molecule to be adsorbed with the molecular plane close to parallel to the surface, a conclusion confirmed by the PhD analysis. Chemical-state specific C 1s PhD data were obtained for the two inequivalent C atoms in the furan, the α-C atoms adjacent to the O atom, and the ÎČ-C atoms bonded only to C atoms, but only the PhD modulations for the α-C emitters were of sufficiently large amplitude for detailed evaluation using multiple scattering calculations. This analysis shows the α-C atoms to be located approximately 0.6 Å off-atop surface Pd atoms with an associated C–Pd bondlength of 2.13 ± 0.03 Å. Two alternative local geometries consistent with the data place the O atom in off-atop or near-hollow locations, and for each of these local structures there are two equally-possible registries relative to the fcc and hcp hollow sites. The results are in good agreement with earlier density functional theory calculations which indicate that the fcc and hcp registries are equally probable, but the PhD results fail to distinguish the two distinct local bonding geometries

    A structural study of a C3H3 species coadsorbed with CO on Pd(1 1 1)

    Get PDF
    The combination of chemical-state-specific C 1s scanned-energy mode photoelectron diffraction (PhD) and O K-edge near-edge X-ray absorption fine structure (NEXAFS) has been used to determine the local adsorption geometry of the coadsorbed C3H3 and CO species formed on Pd(1 1 1) by dissociation of molecular furan. CO is found to adopt the same geometry as in the Pd(1 1 1)c(4 × 2)-CO phase, occupying the two inequivalent three-fold coordinated hollow sites with the C–O axis perpendicular to the surface. C3H3 is found to lie with its molecular plane almost parallel to the surface, most probably with the two ‘outer’ C atoms in equivalent off-atop sites, although the PhD analysis formally fails to distinguish between two distinct local adsorption sites

    Studies with a spontaneous mouse tumor. I. Growth in normal mice and response to Corynebacterium parvum.

    Get PDF
    Growth of isogeneic transplants of a spontaneous murine adenocarcinoma, which is virtually devoid of tumour-specific transplantation antigens, is inhibited by i.v. injection of C. parvum 3 days after tumour inoculation, or by mixing a small dose of C. parvum with the tumour inoculum. Moreover, the therapeutic effect of cyclophosphamide, followed by i.v. or i.p. injection of C. parvum 5 days later, on established transplants of the same tumour is greater than that of cyclophosphamide alone. These findings are consistent with the hypothesis that in both situations (i.e. before the appearance of a palpable tumour and after reduction of an established tumour transplant with cyclophosphamide) the effect of C. parvum is largely due to activation of macrophages or macrophage precursors. They have the important practical implication that adjuvant therapy with C. parvum may be of value, even with tumours which are devoid of TSTA

    A scanning tunnelling microscopy study of C and N adsorption phases on the vicinal Ni(100) surfaces Ni(810) and Ni(911)

    Get PDF
    The influence of N and C chemisorption on the morphology and local structure of nominal Ni(810) and Ni(911) surfaces, both vicinal to (100) but with [001] and 011¯ step directions, respectively, has been investigated using scanning tunnelling microscopy (STM) and low energy electron diffraction. Ni(911) undergoes substantial step bunching in the presence of both adsorbates, with the (911)/N surface showing (411) facets, whereas for Ni(810), multiple steps 2–4 layers high are more typical. STM atomic-scale images show the (2×2)pg ‘clock’ reconstruction on the (100) terraces of the (810) surfaces with both C and N, although a second c(2×2) structure, most readily reconciled with a ‘rumpling’ reconstruction, is also seen on Ni(810)/N. On Ni(911), the clock reconstruction is not seen on the (100) terraces with either adsorbate, and these images are typified by protrusions on a (1×1) mesh. This absence of clock reconstruction is attributed to the different constraints imposed on the lateral movements of the surface Ni atoms adjacent to the up-step edge of the terraces with a [011] step direction
    • 

    corecore