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Abstract 

 

Scanned-energy mode C 1s photoelectron diffraction has been used to investigate the local 

adsorption geometry of benzene on Si(001) at saturation coverage and room temperature. The 

results show two different local bonding geometries co-exist, namely the 'standard butterfly' (SB) 

and 'tilted bridge' (TB) forms,  with a composition of 58±29% of the SB species. Detailed structural 

parameter values are presented for both species including Si-C bondlengths. Based on published 

measurements of the rate of conversion of the SB to the TB form on this surface we estimate that 

the timescale of our experiment is sufficient to achieve equilibrium, and in this case our results 

indicate that the difference in the Gibbs free energy of adsorption, (G(TB) - G(SB)), is in the 

range -0.023 to +0.049 eV. We suggest, however, that the relative concentration of the two species 

may also be influenced by a combination of steric effects influencing the kinetics, and a sensitivity 

of the adsorption energies of the adsorbed SB and TB forms to the nature of the surrounding 

benzene molecules. 
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1. Introduction 

Since the early 1990’s there has been considerable interest in the interaction of unsaturated hydrocarbons 

with semiconductor surfaces, as they offer a potential route to the manufacture of optoelectronic and 

bioanalytical devices. One such model system is  that of benzene on Si(001)-(2x1). The clean Si(001) 

surface undergoes a reconstruction such that adjacent atoms pair together to form rows of dimers as 

illustrated in figure 1. Strictly, these dimers are asymmetric, but flip rapidly between the two opposite 

local asymmetry states to produce only the average (2x1) periodicity shown in figure 1; most adsorbates 

on this surface appear to remove or strongly suppress this asymmetry. 

                                                               

Figure 1. Clean Si(001) surface showing the arrangement of the dimers in the (2x1) reconstruction. 

While there are no previous complete quantitative experimental determinations of the local chemisorption 

structure of benzene on Si(001), a number of different geometries have been proposed. These are 

illustrated in Figure 2. and can be categorised into two groups – those bonded to a single Si dimer and 

those bonded to two adjacent Si dimers (referred to in this paper as double-dimer configurations). In all 

cases the bonding between the C and Si atoms is believed to be of  character such that the aromaticity of 

the benzene ring is removed. There are just two bonding configurations in the first category, referred to as 

the ‘standard butterfly’ (SB) and ‘tilted’ (T) species. In the SB form the interaction with the dimer is 

through the C1 and C4 atoms of the benzene ring. Two double bonds are retained and the molecule has C2v  

symmetry. The T species is formed through the interaction of two adjacent C atoms in the benzene ring 

with the dimer and the plane of the molecule is tilted away from the surface. Four double-dimer species 

have been suggested. In the ‘pedestal’ (P) form the C1, C2, C4 and C5 atoms bond to adjacent Si dimers and 

the plane of the molecule is essentially flat and parallel to the surface. No double bonds remain, yet there 

is an unpaired electron at C3 and C6, which may delocalise to some extent. The ‘tight bridge’ (TB) and 

‘twisted bridge’ (TwB) species both involve bonding of the C1-4 atoms with Si dimers and they retain one 

C=C bond, the bond axis of which is parallel to the surface. They are azimuthally rotated through 90° with 

respect to one another and both species have Cs symmetry; the mirror plane is perpendicular to the dimers 

in the case of TB and parallel to them in the case of TwB. The final structure shown in Figure 2 is the 
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‘diagonal-bridge butterfly’ (DBB) species which is similar to the SB, in that only  the C1 and C4 atoms of 

the benzene molecule are involved in the surface bonding, but the two Si atoms are in different dimers. 

Numerous studies have been carried out with a view to identifying the structure(s) of the chemisorbed 

benzene species and the main conclusions from these investigations are summarised below. There have 

also been a limited number of reports of structural parameters for benzene adsorbed in the different forms. 

                

Figure 2. Structures of the possible configurations of benzene adsorbed on Si(001)-(2x1) considered in 
this paper. 
 

The first surface science study of this system, by Taguchi et al. [1], was a combined temperature 

programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS) and Auger 

electron spectroscopy (AES) investigation which concluded that benzene physisorbs at low temperature 

and chemisorbs at room temperature. TPD showed two desorption peaks, at ~460 and ~505 K, which were 

attributed to benzene adsorbed on terrace and defect sites, respectively. From AES the saturation coverage 

of benzene was estimated to be 0.27 benzene molecules per surface Si atom (or approximately 1 benzene 

molecule per 4 surface Si atoms). This means that at saturation coverage one benzene molecule is 

adsorbed per pair of Si dimers. At saturation coverage it was estimated that ~ 17% of the benzene was 

adsorbed on the defect sites. HREELS results were found to be consistent with species with C2v symmetry, 

and it was concluded that benzene adopted the SB configuration on the terrace sites. 

 

Gokhale et al. [2] also detected two chemisorbed forms of benzene in TPD spectra, and having found 

evidence of C2v symmetry in angle-resolved UV photoelectron spectroscopy (ARUPS) measurements, 

arrived at the same conclusion as Taguchi et al., although they detected a higher fraction of the saturated 

monolayer in the higher temperature desorption peak (~ 33 %). Li et al. [3] observed a third peak in their 
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thermal desorption spectroscopy and concluded that in addition to the two adsorption states mentioned 

above, a double-dimer adsorbed species must also exist, although they did not specify its structure. 

 

Several groups have reported mixed layers of SB and TB. On the theoretical side, both Silvestrelli et al. 

[4] and Lee et al. [5] (using density functional theory (DFT)  total energy slab calculations) found that the 

TB is the most stable of the double-dimer species, while the SB is the most stable single dimer species. 

They also claimed that benzene was most likely to adsorb on the surface in the SB form, but that this was 

a metastable state, which would convert to the more stable TB form with time. The activation barrier for 

this process was estimated to be of the order of 1 eV. Kruse et al. [6] found evidence in STM images of 

the presence of both SB and TB species adsorbed on the surface at both low and high coverage. Kong et 

al. [7], employing a combination of near-edge X-ray absorption fine structure (NEXAFS), Fourier 

transform infrared spectroscopy (FTIR) and TPD, also concluded that two forms of adsorbed benzene 

were present in the saturated overlayer. One of these was the SB species, but they were unable to 

unambiguously assign the other species to either the TB or TwB form.  

  

There have been a number of scanning tunnelling microscopy (STM) investigations that have been 

interpreted in terms of the presence of both TB and SB species, but in addition, a small amount of a third 

species was detected [8, 9, 10, 11, 12, 13]. The consensus was that this extra species is TwB benzene 

which is adsorbed at a 'type C defect' site, thought to consist of two dimers buckled in phase due to a 

vacancy or defect in the second layer [14]. Lopinski et al. [8] carried out their STM investigation at low 

coverage and observed a time dependent conversion of SB to TB, in agreement with the theoretical 

predictions. Borovsky et al.  [9, 10] also observed conversion from SB to TB in their low coverage STM 

study. These experimental results were corroborated by Wolkow et al. [11] and Hofer et al. [12, 13] in a 

combination of semi-empirical Hartree-Fock and DFT calculations, as well as simulated STM images. The 

results of Borovsky et al. and Lopinski et al. differ, however, in the extent of the conversion of the SB to 

TB species. Borovsky et al. report complete conversion within the statistical limits of the experiment, 

while Lopinski et al. found that ~15 % of the benzene remained unconverted from the SB form after 150 

mins.  

 

In contrast, a significant number of studies have reached the conclusion that only the SB species is present 

on the surface. These include the STM investigation of Self et al. [15] at low coverages, as well as the 

angle-scan X-ray photoelectron diffraction (XPD) experiments of Shimomura et al. [16]. Nagao et al. [17] 

concluded from their high resolution Si 2p X-ray photoelectron spectroscopy (XPS) studies that at 

saturation coverage 50 ± 10% of the Si dimers were involved in bonding to benzene, consistent with SB 

adsorption. It should be noted, however, that this experiment was performed at 140 K. Witowski et al. [18, 

19] recently reported that NEXAFS, reflectance anisotropy spectroscopy (RAS), and surface differential 

reflectivity spectroscopy (SDRS) studies indicated the presence of 0.47 benzene molecules per Si dimer. 
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DFT calculations by Birkenhauer et al. [20] led to the conclusion that the SB structure was the most stable. 

It should be noted, however, that they only considered the SB, T and P models. Kim et al. [21] recently 

carried out an XPS investigation of the structure of the surface species as a function of coverage and 

claimed that the TB species was preferred at low coverage while at high coverage benzene was 

exclusively in the SB form.  

 

With the exception of a semi-empirical cluster calculation by Jeong et al. [22] which found the P form to 

be the most stable, there has been no support in the literature for the P, T and DBB forms of adsorbed 

benzene. 

 

Turning now to quantitative structural aspects, almost all the information available comes from theoretical 

total energy calculations, rather than experiment. For the SB species Si-C bondlengths of 1.89 [8, 11, 13], 

1.94 – 1.97 [20] and 1.98 Å [12] have been reported, all of which are slightly higher than those typically 

encountered in organo-silicon compounds (1.85 – 1.88 Å) [23]. The majority of C-C bondlengths lie in the 

range 1.47 - 1.51 Å, with one exception of 1.59 Å, while all theoretical models agree on a C=C bondlength 

of 1.35 Å [2, 4, 8, 12, 13, 20]. These values compare well with the average bondlengths in free 

hydrocarbon molecules of 1.54 Å for C-C and 1.34 Å for C=C [24]. The bondlength of the Si-Si dimer on 

which the benzene is adsorbed has been reported in the range 2.35 – 2.46 Å [8, 12, 20], which represents 

an increase from the dimer bondlength on the clean surface of 2.29 Å. Bond angles within the molecule 

correspond to the expected ~120° associated with sp2 hybridisation and 109.9° expected for sp3 C. Only 

two experimental structural studies have been carried out on this system. The ‘wings’ of the SB were 

found to be tilted upwards from the surface by 30° using NEXAFS [7]. XPD measurements (including 

some at low photoelectron kinetic energy) [16] gave bondlengths of 1.3 – 1.6 Å and 1.2 – 1.4 Å for the C-

C and C=C bondlengths, respectively. These are in agreement with those predicted by theory, but the 

precision is rather low. Even less information is available about the structure of the TB species. The single 

experimental study (NEXAFS [7]) suggested that the wing of the molecule was tilted away from the 

surface plane by 43°. Theoretical calculations gave Si-C bondlengths of 1.87 – 1.89 Å [11, 13] and ~ 2.0 

Å [12], C-C bondlengths in the range 1.47 – 1.59 Å, a C=C bondlength of 1.35 Å [4, 12, 13] and a wing 

tilt of 45 [4]. Only Hofer et al. [12] provide  any structural data on the substrate in this adsorption 

structure; specifically their theoretical calculations led to the conclusion that the Si-Si dimer bondlength 

was increased to 2.35 Å, while the separation between the dimers involved in the bonding of a single 

benzene molecule was reduced from 3.84 Å on the clean surface to 3.36 Å. 

 

As can be seen from the above summary, many aspects of the local structure of  adsorbed benzene on 

Si(001)-(2x1) at saturation coverage remain unclear. There are a significant number of experimental 

studies indicating that benzene initially adsorbs in the SB state and that this converts rather quickly to the 

TB state, although there is very little quantitative experimental structural data. Taking into account the 
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reported activation energies for this conversion, together with the relative stabilities of the two states, one 

would expect that complete conversion to the TB state should occur within a relatively short time period. 

The experimental evidence for this, however, is inconclusive. Moreover, there are also a significant 

number of studies which conclude that only the SB form is present on the surface.  

 

We report here on the results of experiments conducted with the objective of determining unambiguously 

the local adsorption structure(s) in the saturated layer; i.e. to determine which local bonding configurations 

are occupied by benzene (SB, TB or other species), and whether at this coverage one or more of these 

states coexist on the surface. To achieve this goal, we present here the results of a scanned-energy mode 

photoelectron diffraction (PhD) [25, 26] study of C 1s photoemission from a saturated layer of benzene on 

Si(001)-(2x1) at room temperature. The PhD technique exploits the coherent interference of the directly-

emitted component of the outgoing photoelectron wavefield from a core level of an adsorbate atom with 

components of the same wavefield which are elastically backscattered by the nearby substrate atoms. By 

measuring the photoemission intensity in specific directions as a function of photon energy, the resulting 

changes in photoelectron energy, and thus photoelectron wavelength, cause specific scattering paths to 

switch in and out of phase with the directly-emitted component, leading to modulations in the intensity 

which depend on the relative emitter-scatterer location. Simulations of these PhD modulation spectra, 

including multiple scattering for the surrounding atoms in ‘guessed’ model structures, allow one to 

determine the local adsorption geometry around the emitter atom. In the present case our C 1s PhD data 

provides detailed information on the local scattering environment of the adsorbed benzene molecules, thus 

providing the first complete set of experimental structural parameters for this system. 

 

2. Experimental details 

The experiments were performed in a UHV surface science end-station operating at a base pressure of 

10-10 mbar. The Si(001) wafer (P doped, 10  cm) was cleaned ex situ by rinsing in methanol and ultra 

pure water prior to mounting on the end of a manipulator which was designed to allow both azimuthal and 

polar rotation of the sample. The crystal surface was cleaned in situ by flashing the sample to 1550 K 

which, on cooling to room temperature, produced a well ordered two-domain (2x1) LEED pattern, 

characteristic of the  clean Si(001)-(2x1) surface. Surface cleanness was also confirmed by XPS. Benzene 

was purified by freeze-pump-thaw cycles prior to dosing, and the purity of the vapour in the UHV 

chamber confirmed using a quadupole mass spectrometer. A series of XPS spectra of the C 1s and Si 2p 

regions were recorded as a function of benzene exposure to the surface at room temperature (figure 3). It 

can be seen that there is a shift in the kinetic energy of the C 1s peak maximum of ~ 0.4 eV as the 

coverage increases, and that a dose of 5 L is sufficient to produce a saturated monolayer of adsorbed 

benzene. This exposure was used to create the overlayers which were subsequently measured by PhD. The 

UE56/2-PGM1 beamline at the BESSY II synchrotron radiation facility in Berlin was used as the photon 

source for these experiments. The analyser chamber contains an Omicron EA-125HR, 125 mm mean 
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radius hemispherical electrostatic analyser, equipped with seven-channeltron parallel detection used to 

detect the emitted photoelectrons. Scanned-energy mode PhD data were collected by recording energy 

distribution curves (EDCs) covering an energy window of 10.8 eV width centred around the C 1s peak at 

3 eV intervals in photon energy. Measurements were made on the C 1s photoemission peak in the kinetic 

energy range of 60 – 221 eV at polar emission angles of between 0° and 60. Most measurements were 

made in the two high-symmetry azimuths, [100] and [110], but a few measurements were also made in an 

intermediate [830] azimuth corresponding approximately to the average direction of the bonds between Si 

dimer atoms and the Si atoms in the underlying unreconstructed layer (see figure 1). These data were 

processed following our general PhD methodology (e.g. [25, 26]) in which the individual EDCs are fitted 

by a  Gaussian peak, a step and a template background. The integrated areas of the C 1s peaks were then 

plotted as a function of photoelectron energy and each final PhD modulation spectrum was obtained by 

subtraction of, and normalisation by, a smooth spline function representing the non-diffractive intensity 

and instrumental factors. These PhD modulation spectra were used in the structure analysis described in 

the following section. 

                   

Figure 3. C 1s spectra recorded with a photon energy of 350 eV as a function of benzene exposure to the 
clean Si(001)-(2x1) surface.  
 

3. Structure analysis 

A subset of the C 1s PhD modulation functions obtained in these experiments and used in the structural 

analysis are shown in Figure 4.  A characteristic feature of the data is the very weak modulations; the data 

shown in Figure 4, which were all recorded at relatively small polar emission angles, were selected as 

showing the strongest (and thus most reliable) modulations, yet even these spectra show a modulation of 

amplitude of only about ±10%. In general one sees the strongest modulations in PhD when making a 

measurement in a geometry corresponding to 180° backscattering from a nearest-neighbour substrate 

scattering atom. For benzene on Si(001)  such a situation is impossible for two reasons. Firstly, the 

molecule contains six C atoms which, on this surface, must occupy at least two symmetrically 
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inequivalent sites, so as the C 1s photoemission peak is a composite of emission from all of these six C 

atoms, not all of them can be in this favourable backscattering geometry for any emission direction. 

Secondly, because there is a mismatch of the C-C and Si-Si distances on the surface, not all these C atoms 

can occupy high-symmetry sites on the surface, so in any PhD measurements recorded at angles away 

from normal emission there is further averaging of inequivalent geometries, for the different emitter 

atoms, and in the different symmetrically-equivalent surface domains. Both effects mean that the 

measured C 1s PhD spectra comprise an incoherent sum of the individual diffraction spectra from a 

multiplicity of different scattering geometries, strongly attenuating the resultant modulations.  These weak 

modulations represent a significant challenge to the structure determination in that both experimental 

noise and possible defects in the theoretical modelling have an enhanced significance. Nevertheless, the 

data do prove to form the basis of a surprisingly incisive structure determination. 

                        

Figure 4. Comparison of the experimental and theoretical C 1s PhD modulation functions giving the best 
fit structural model for the saturated monolayer of benzene on Si(001)-(2x1).  
 

In order to extract the structure from these measurements, multiple scattering curved-wave calculations 

must be performed for a range of trial structures, using a computer code developed by Fritzsche [27, 28]. 

This theoretical formulation is based on a magnetic quantum number expansion and takes into account the 

finite acceptance angle of the detector and the energy resolution of the experiment. These factors help to 

reduce the importance of longer scattering pathways, and ensure that fourth and higher order scattering 

events can largely be ignored. Calculations are then performed for a range of trial structures until optimal 

agreement is achieved between theory and experiment; if the result satisfies certain criteria of structural 

sensitivity, goodness-of-fit and uniqueness, the best model structure is then believed to be an accurate 
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description of the true structure. To quantify the agreement between the theoretical and experimental 

modulation functions a reliability factor, Rm is calculated using the equation: 
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exp is the experimental modulation amplitude, while th is the theoretical modulation amplitude, and the 

summations are over all different energies and emission directions in the set of PhD modulation spectra 

used in the analysis. Rm is the normalised sum of the squares of the differences between exp and th and 

should be as close to zero as possible. Typically, in a range of structural studies using this approach, 

values in the range  ~ 0.1 - 0.3 have been found to be achievable. In general, it is easier to get a low R-

factor when the modulation functions have a high amplitude, but good agreement may also be achieved 

even with modulations comparably weak to those seen here [29]. 

Once a minimum R-factor is found (Rmin), there is also an objective criterion to  discriminate between 

acceptable and unacceptable structural models, as well as to determine the error limits of the structural 

parameters in the preferred model. This involves a calculation of the variance in Rmin, which is defined as 

var(Rmin)= Rmin √(2/N), where N is a measure of the number of independent pieces of information in the 

experimental data (see reference [30] for more detail). Any structural model that has an R-factor value 

greater than Rmin + var(Rmin) can be excluded. The relatively short data range of the experimental PhD 

spectra used in the present analysis lead to a value of  var(Rmin) = 0.30 Rmin. 

 

The analysis was first conducted on the assumption that only one structural species was present on the 

surface. Multiple scattering simulations were therefore conducted starting from each of the structures 

depicted in figure 2. Calculations were conducted assuming an ordered (2x2) overlayer structure such that 

each unit mesh contained one benzene molecule per pair of Si dimers. As intermolecular scattering of 

photoelectrons is relatively unimportant, particularly for near-normal emission geometries, the results are 

very insensitive to the long-range ordering of the overlayer.  For each structural model,  optimisation of 

the agreement between theory and experiment was achieved by adjusting  the C-C, C=C, Si-C and Si-Si 

dimer bondlengths, together with intramolecular bond angles, to achieve a minimum R-factor. The results 

are summarised in Table 1, which clearly shows that Rmin is lowest for the SB species (0.23). Next lowest 

is the TB species with an R-factor of 0.26, which lies within the Rmin + var(Rmin) value of 0.30, and 

consequently must also be considered as a possible structural model. The R-factors of the remaining 

species are above this limit, which permits us to exclude overlayers of the TwB, T, P and DBB species as 

possible adsorption configurations of benzene on Si(001)-(2x1). Thus the preliminary analysis would 

indicate that if we have a single form of benzene adsorbed in the saturated monolayer, then it is most 
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likely to be the SB species, although we cannot exclude at this point the possibility that the TB 

configuration is adopted instead. These findings are consistent with the conclusions of many of the 

previous studies on this system. 

  

Table 1. Summary of the best-fit R-factor values achieved through fits to the experimental PhD 
modulations spectra of figure 4, assuming all adsorbed benzene molecules occupy one of the geometries 
shown in figure 2. 

Species SB T P TwB TB DBB 

Rmin 0.23 0.63 0.47 0.45 0.26 0.35 

 

As described in the introduction, however, there have also been a number of reports which suggest that the 

overlayer  contains more than one form of adsorbed benzene. The second step in our structural analysis 

was therefore to run similar simulations of mixed overlayers comprising coadsorption of two structural 

components. As a starting point, these calculations used the structural parameter values obtained in the 

analysis based on the presence of a single species described above. In these simulations the relative 

amounts of each coadsorbed species on the surface was systematically varied over the whole composition 

range to find the mixture which gave the best R-factor. The structural parameters of each species were 

then re-optimised at that composition. The first mixture chosen was SB and TB, based primarily on the 

observation that these two species gave the lowest R-factors in the single-site analysis, although we also 

note that this is the most common mixture reported in the literature [4-13]. The significantly higher R-

factor values for the other single-site structures makes it improbable that some other two-site model will 

provide an improved description of the PhD data. A striking result of these calculations was that the 

inclusion of even a small amount of the second species in the overlayer led to a significant decrease in R-

factor, even before re-optimising the individual structures. The lowest value of 0.14 corresponded to an 

SB;TB mixture in the proportions 58%;42%. The re-optimisation of the SB structure at this composition 

resulted in a decrease in the Si-Si dimer bondlength from 2.75 Å to a more reasonable value of 2.45 Å, 

and a decrease in the wing tilt from 42° to 15°. Other parameters were unchanged and are listed in Table 

2. Re-optimisation of the TB structure in the coadsorption model caused the bondlength of the Si-Si dimer 

bonded to C2-3 to decrease from 2.24 Å to 2.06 Å, while that bonded to C1 and C4 increased from 2.34 Å to 

2.65 Å. The C2-C3 bondlength was increased from 1.45 Å to 1.76 Å while that of C1-C2 was reduced from 

1.59 Å to 1.38 Å. The C=C bondlength was also reduced from 1.52 Å to 1.41 Å (see Table 3). These 

values will be discussed later. This re-optimised mixed SB/TB model yielded a further reduction of the R-

factor to 0.12, which was markedly lower than that for either of the single species overlayers. Indeed, 

based on the variance, we can exclude compositions which give rise to an R-factor above 0.16, which 

allows us to discount the possibility that the overlayer consists of a single species. Simulations run on 

TB/DBB and SB/DBB mixtures also gave minimum R-factors significantly larger than this (0.24 at 71% 

TB and 0.23 at 62% SB, respectively). Therefore we can conclude that the saturated monolayer of benzene 
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adsorbed on Si(001)-(2x1) at room temperature must contain a mixture of at least SB and TB. Figure 5 

shows the variation in R-factor as a function of the percentage of SB in an overlayer containing both SB 

and TB using the structural parameters obtained for the optimum composition and listed in Tables 2 and 3. 

This shows that after structural re-optimisation the composition yielding the minimum R-factor is 

unchanged, indicating a stable solution. The horizontal dashed line in figure 5 at an R-factor value 

corresponding to Rmin + var(Rmin) shows that the range of acceptable solutions (with R-factor values below 

this line) corresponds to an SB fractional occupation of 58±29 %. The structural parameters for both the 

SB and TB species in this saturated layer are listed in figure 6.  

 

Table 2. Structural parameter values for the 'standard butterfly' (SB) adsorption site of benzene on Si(001) 
– (2x1). * denotes the Si dimer on which benzene is adsorbed. 

Ref. 
Si-Si 
dimer 

separation 
(Å) 

*  
 
 

Si-Si dimer 
(Å) 

Si

Si

 
 (Å) 

Si

Si

 
(Å) 

Si

Si

  
(Å) 

Si

Si

 
 

Si

Si

 
 

DFT 
STM 
[12]  

3.36Å 2.39*  1.98 1.50 1.35   

DFT 
STM 
[13] 

 2.38* 1.89 1.47-1.49 1.35   

TPD 
ARUPS 

[2] 

   1.51 1.35 close to the  
ideal 

tetrahedron 
angle 

(109.5) 

 

Theory 
STM [4] 

   1.49-1.59 1.34-1.36 103° – 
113° 

119° – 
122° 

STM 
FTIR 
SQCC 

[8] 

 2.44* 1.89 1.49 1.35   

NEXAFS 
[7] 

     wing tilted 
~30º from 

surface 
plane 

 

XPD [16]    1.3-1.6 1.3 85º– 115º  
DFT 

MNDO/d 
LCGTO-
DF [20] 

  
2.46*  2.35 

 
1.97 
1.94 

 
1.51 
1.53 

 
1.35 
1.36 

 
109.9º 
109.6º 

 
119.2º 
118.8º 

Current 
Study 

3.59  
± 0.70 

2.45*  
± 0.40   

 
2.30  

+4.00/-1.00 

1.93   
± 0.03 

1.47  
+0.36/ 
-0.11 

1.35  
+0.15/ 
-0.45 

120.5º 
wing tilted 
15±4° from 

surface 
plane 

115.9º 
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In the analysis described above, the surface was assumed to contain independent domains of either SB or 

TB. For completeness, further simulations were conducted on a selection of long-range ordered phases 

containing both species. Since the minimum R-factor corresponded to a composition close to a 1:1 ratio of 

SB:TB, these phases were defined to have 1 SB and 1 TB molecule per surface unit mesh. Figure 7 shows 

the arrangement of the benzene molecules in these models; while other possible  long-range ordered 

arrangements of equal occupation of the SB and TB species on the surface clearly exist, these models 

serve to test the sensitivity of the measurements to the effects of intermolecular scattering. As anticipated, 

the simulations showed only very small differences in individual R-factors, all values falling within a 

range of 0.007. A consequence of this insensitivity, of course, is that it is not possible, on the basis of PhD 

measurements alone, to determine whether the co-adsorbed SB and TB structures are locally mixed or 

occur in separated domains. 

 

Table 3. Structural parameter values for the 'tight bridge' (TB) adsorption site of benzene on Si(001)-
(2x1). * denotes the Si dimer which interacts with the C2 and C3 atoms of the benzene ring. 

Ref.  
 

(Å) 

*  
 

(Å) 

SiSi

Si Si

 
(Å) 

SiSi

Si Si

 
(Å) 

SiSi

Si Si

 
(Å) 

SiSi

Si Si

 
 

SiSi

Si Si

 
 

DFT 
STM 
[12] 

3.36 2.35* 2.0 1.35 1.57   

DFT 
STM 
[13] 

  1.87-1.89 1.35 1.47-1.53   

Theory 
STM [4] 

   1.34-1.36 1.49-1.59 119 –122° 103 –113° 
wing tilted 
45º from 

the surface 
plane 

NEXAFS 
[7] 

      wing tilted 
43º from 

the surface 
plane 

Current 
Study 

2.71  
+0.31/-0.40 

2.06*  
+0.44/-0.76 

 
 2.65 ± 0.35 

1.85  
+0.10/-0.15 

1.41  
+0.62/-0.55 

1.76 
+1.06/-1.72 

 
  1.38  

+0.47/-0.29 

116.0º 105.5º 
wing tilted 
47+7/-15º 
from the 
surface 
plane 

 

So far we have presented the results of an analysis of the PhD data based on either a single local benzene 

adsorption geometry or the coexistence of two different local species. The results show a clear and 

significant preference for the coexistence of the SB and TB species. We might therefore ask whether a 

similar improvement might be achieved by a model involving the coexistence of three distinct species; 

indeed, some occupation of a third species has been reported in several STM studies [8, 9, 10, 11, 12, 13]. 
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We have not investigated this possibility, in part because optimisation of a three-site model presents a 

formidable (and probably unrealistic) computational task, but also because the results obtained so far 

indicate that such an investigation is unlikely to be fruitful. In particular, the R-factor obtained for the two-

site model is already very low, while the R-factors for the single-site models based on all the other 

structures are high, so a substantial occupation of any of these sites is most unlikely to reduce the overall 

R-factor. It is certainly possible that a very small fractional occupation (e.g. ~5% or less) of a third site 

could lead to further improvement we have obtained,  but it is unlikely that the improvement in the R-

factor would prove to be sufficient to be formally significant in view of the relatively large value of the 

variance associated with the modest size of the useable PhD data set. The implication, of course, is that 

such a low fractional occupation of a third site may occur, but we would be unable to confirm or refute 

this in a definitive way. 

                               

Figure 5. Plot of R-factor as a function of the percentage of SB in a mixed SB/TB monolayer. The 
horizontal line represents the upper limit of the variance. 
       

 

Figure 6. Structural models of the TB (left hand side) and SB (right hand side) determined from our PhD 
analysis. 
 

 



 14

                  

Figure 7. Diagrams of the arrangement of benzene molecules in mixed SB/TB domains which were 
simulated to test the sensitivity of PhD to the nearest neighbour molecules. 
 

4. Discussion 

Using C 1s PhD we have been able to determine unambiguously that the saturated benzene overlayer on 

Si(001)-(2x1) contains both SB and TB species with a composition of 58±29% of the SB species. This 

conclusion is consistent with the results of earlier STM studies, but in the present case the structural 

conclusions in identifying the bonding sites and their detailed geometries is quantitative rather than 

qualitative. Despite the weak PhD modulations and the complexity of the system, we have been able to 

achieve an extremely good R-factor of 0.12.  

 

4.1 SB/TB co-occupation and interconversion 

While our PhD study provides fundamentally new quantitative structural information on the local 

structures of benzene adsorbed on Si(001), we also find quantitative information on the co-occupation of 

two sites that may help to illuminate questions concerning the relative stability of these two adsorption 

states and the rate of conversion between these states. Our results are in general agreement with those 

groups who reported that both SB and TB exist on the surface, but who also identified inter-site 

conversion from SB to TB [4, 5, 6, 7]. Underlying this observation of inter-site conversion is that of the 

possible conditions for equilibrium between occupation of the two sites. 

 

Before considering this issue in more detail we first comment on those studies which reported the presence 

of only SB species; do these results really conflict with other experiments identifying co-occupation of 

two sites? In some of these studies the failure to identify two sites can clearly be attributed to the limited 

range of adsorbate species considered (for example, only the SB, T and P in refs [15] and [20]). In some 

other cases, such as the XPD study of Shimamouro et al. [16], the possibility of a mixed SB/TB overlayer 

was simply not considered, and it is certainly possible that including co-occupation of the TB geometry 

may produce improved theory/experiment agreement. Witowski et al. [18] based their identification of the 

SB site occupation on their measured coverage of 0.47 benzene molecules per Si dimer, but this only 
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really explains that there is one benzene molecule per two dimers, not whether the benzene molecule is 

bonded to one or two of these dimers. Perhaps the most convincing argument for the presence of only the 

SB species is the XPES study by Nagao et al. [17], in which they found that 50±10% of the Si dimers 

were involved in bonding to benzene. However these measurements were carried out at 140 K. If 

adsorption is initially into the SB site and then converts to TB sites by a thermally-activated process, the 

measured activation barrier (see below) implies a half life for the conversion at 140 K of ~1014 years! 

Thus, the results of Nagao et al. may be regarded as demonstrating that the SB state is the one adopted on 

initial benzene adsorption, and that conversion to the TB species is highly activated. Finally we turn to the 

XPS measurements of Kim et al. [20]. We have, reproduced the qualitative trend of results in our coverage 

uptake measurements, in that we detect an increase of 0.4 eV in binding energy of the C 1s peak on going 

from low coverage to high coverage, but they detect only an increase of about 0.2 eV (figure 3). These 

shifts can be rationalised in terms of the two chemically distinct C atom environments, i.e. the sp3 type C 

which is -bonded to Si and the sp2 type C in the double bonds. In the SB species the ratio of the -

bonded C to the doubly bonded C is 1:2. This ratio is reversed to 2:1 for TB. Since the photoelectron 

binding energies of the C 1s will be different for these two chemically distinct species, a shift in energy of 

the peak maximum is consistent with a change in the relative concentrations of adsorbed SB and TB 

species. Assuming a BE of 238.9 eV for the -bonded C and 284.2 eV for the doubly bonded C, Kim et al. 

concluded that at low coverage the molecules were all in the TB state while at high coverage they were all 

in the SB state. However, the binding energy assigned to the doubly bonded C is inconsistent with earlier 

work by Tao et al. [31], who measured XPS spectra of a series of unsaturated C6 rings on Si(111)-(7x7), 

and were able to attribute binding energies of 283.8 – 283.9 eV to -bonded C and 285.0 – 285.1 eV to 

doubly bonded C. Using these binding energies, we estimate that a shift of 0.4 eV would be expected for 

an SB/TB overlayer which was approximately 50 % SB at high coverage, if initial adsorption at low 

coverage is predominantly in the TB configuration. This composition of the saturated monolayer is 

consistent with that obtained from our PhD results. 

 

Both Taguchi et al. [1] and Gokhale et al. [2] found evidence from TPD for two species adsorbed on the 

surface.  In the light of the results of subsequent studies it may now be appropriate to reinterpret their data 

in terms of co-occupation of SB and TB states, rather than SB and step-edge adsorption; the peak at ~ 465 

K would thus correspond to desorption of the SB species, while that at ~ 505 K is due to TB. The 

HREELS spectra of Taguchi et al. contain many peaks which are excited both by impact scattering as well 

as dipole scattering, which would be consistent with the presence of both the TB species and the highly 

symmetric SB species. Gokhale et al. observed some features in their ARUPS spectra which did not 

conform with the C2v symmetry of the SB species. In particular there was a breakdown of the symmetry in 

the vertical plane perpendicular to the Si dimers. They suggested that this was due to the miscut of the 

crystal required to suppress one of the two rotational domains of the (2x1) reconstruction on the surface, 
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but an alternative explanation would be that these features arise from a molecule adsorbed with the 

symmetry of the TB species. 

 

The results of our structure determination show that a significant range of compositions of SB and TB 

give an acceptable fit between theory and experimental data, a consequence of the limited precision of this 

parameter. However, previous studies in the literature report an even wider range of compositions, 

implying a significant variation in this quantity for different experiments. The probable reason for this is 

that not all experiments measure the equilibrium composition (indeed, some studies show the composition 

changes with time), and that the nature of the non-equilibrium states studied depend on the kinetics of the 

conversion between the TB state and SB states. Time-dependent STM measurements at room temperature 

have shown a gradual conversion from SB to TB states  with an estimated activation barrier of 0.94 – 1.0 

eV [8, 9, 11], assuming a pre-exponential factor of 1013 sec-1; the value of 0.87 eV obtained in the 

calculations of Lee and Cho [5] is in good agreement with this value. On this basis, experiments which are 

performed quickly are likely to show the presence of more SB than TB [19, 32], as the molecules will not 

have had sufficient time to convert, but at room temperature one would expect conversion of > 90 % of the 

SB to the TB form within an hour. As our PhD data are collected on timescales longer than one hour, this 

argument might lead us to expect that our surface should contain only the TB species. Such a conclusion, 

however, is based on the implicit assumption that the equilibrium state is essentially 100% TB occupation, 

(and that the rate of the reverse TB-to-SB conversion process is negligible), which in turn implies that the 

adsorption energy of the TB state is very much larger than that of the SB state. 

 

Theoretical total energy calculations have produced a wide range of relative adsorption energies for these 

two structures, the majority predicting that the TB species is more stable by 0.3 – 0.65 eV [4, 8, 11, 12, 

13]. These values would give an equilibrium constant (defined here as the ratio of TB/SB in the 

monolayer) of between 1 x 105 and 8 x 1010, so the equilibrium state is, essentially, pure TB state 

adsorption. Since we did not observe this, and our experimental timescale is long compared with the rate 

constant measured in the STM experiments, we may infer that the adsorption energy difference must be 

much smaller that these values. Indeed, our experimental result indicates that the equilibrium constant is 

0.72, implying that the SB state is actually energetically favoured, but by only 0.009 eV. Using the range 

of compositions consistent with our data we may conclude that at one extreme the TB species is more 

stable by 0.023 eV, while using the opposite end of the composition range leads to the conclusion that the 

SB species is more stable by 0.049 eV. These values are consistent with the much smaller energy 

differences calculated by Lee et al. [5] (TB more stable by 0.07 eV ), Lopinski et al. [33] (TB more stable 

by 0.04 eV) and Jung et al. [34] (SB more stable by 0.1 eV).  

 

While this discussion provides a rationale for many aspects of the experimental results for the 

Si(001)/benzene adsorption system, several aspects are significantly simplified. In particular, no account is 



 17

taken on intermolecular effects on the adsorption energies and in steric effects that may influence the 

ability of the surface to achieve equilibrium. In general all theoretical calculations of these adsorption 

energies are based on isolated molecules in either the SB or TB geometry, or ordered arrays of these single 

species. However, Lee and Cho [5] extended their calculations to include the energies for small linear 

clusters consisting of three adsorbed benzene species containing SB and TB species arranged in different 

configurations. Their results show variations in the energies of up to 0.1 eV depending on the 

configuration, and we believe that these effects may be a key to understanding the composition of the 

equilibrium layer. Another factor which must be considered is steric effects. To understand this, we start 

by picturing a saturated overlayer of benzene on Si(001)-(2x1) in which all of the benzene molecules are 

adsorbed in the SB configuration, and are equally spaced on the surface, i.e. there is a vacant dimer on 

either side of each SB. To convert from the SB to the TB form, the SB molecule simply has to tilt over to 

either the right or left hand side and interact with the free dimer. If we assume that the direction of this tilt 

is completely random, then there can arise a situation where the molecules on either side of an SB both tilt 

towards it. As a result, this SB species is unable to convert to the TB form as it does not have an adjacent 

free dimer. This could provide an alternative explanation of why conversion to the TB species is not 

complete at saturation coverage: that the conversion process is sterically hindered, rather than limited by 

equilibrium between two states of very similar adsorption energy. A very simple Monte Carlo-like 

calculation based on these assumptions led to an estimate that around 20% of the SB may remain, which is 

slightly lower than our experimental values. In reality, though, it is likely that once one molecule has tilted 

in one particular direction it will influence the kinetics of the surrounding molecules, so a more 

sophisticated Monte Carlo simulation taking these factors into account may result in a surface composition 

which is closer to our experimentally determined values.   

 

4.2 Structural parameters 

The PhD technique provides us with two key pieces of information: the adsorption sites, and the detailed 

structural parameters of these sites. In the present case the identification of two distinct co-occupied sites, 

and their relative occupation, provides an unusual degree of insight into the energetics and kinetics of the 

surface species not generally available for a structural technique, as discussed above. More typical of such 

measurements are quantitative details of the adsorption geometries. The structural parameter values 

associated with the two adsorption states are listed in Tables 2 and 3 and show good agreement with 

theoretical total-energy calculations. The Si-C bondlengths have been determined with a high degree of 

precision, and did not change on re-optimisation of the species in the mixed overlayer. Good precision for 

the bondlengths from the emitter atoms (in this case C) and the nearest-neighbour substrate scatterer atoms 

(Si) is characteristic of the PhD technique, particularly when the experimental data set involves emission 

angles reasonably close to these bond directions, as in the present case The precision of the C-C and C=C 

bondlengths is much lower. This arises because this information comes primarily from scattering off 

neighbouring, weakly-scattering, C atoms and also because many of the C-C and C=C bonds are oriented 
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close to parallel to the surface and so will not lead to strong scattering modulations in emission directions 

close to the surface normal. The precision is also limited in the present case by the use of only four PhD 

spectra in the analysis, leading to a higher variance. Better precision can generally be obtained by 

including more spectra in the simulations;  for example using eight spectra would have reduced the 

variance from 30% to 20% of Rmin, but because the intensity of the modulations at emission angles further 

away from normal were extremely weak, a higher value of Rmin is to be expected, resulting in no overall 

improvement in the absolute variance. 

 

Considering firstly the SB structure, our Si-C bondlength of 1.93±0.03 Å is extremely close to that of 

Birkenheuer et al. [20], and within the overall range of 1.89 – 1.98 Å [8, 11, 12, 13] reported in the 

literature. Similarly the C=C bondlength of 1.35 (+0.15/-0.45) Å, while less precise, shows excellent 

agreement with previous studies as does our C-C bondlength of 1.47 (+0.36/-0.11) Å [2, 4, 8, 12,13, 20. 

The bondlength of the Si-Si dimer to which the benzene was bonded was determined with reasonable 

precision (2.45±0.40 Å), unlike that of the free dimer (2.30 (+4.00/-1.00) Å). The latter is unsurprising as 

the scattering of the C 1s photoelectron waveform from these atoms is expected to be minimal. Perhaps 

the most interesting structural parameter is the wing tilt, which was determined quite precisely to be 

15±4°, a smaller degree of distortion than the 30° previously found by NEXAFS [7], but within the limits 

of 10.4° - 26.5° derived from the structural parameters of Silvestrelli et al. [4]. 

 

There are fewer structural parameters available for comparison for the TB species. The results presented 

here are those which have given the optimum R-factor. Those which we were able to determine with 

reasonable precision, namely the Si-C bondlength of 1.85 (+0.10/-0.15) Å and the wing tilt of 47 (+7/-15) 

agree well with previously reported values (references [13] and [4, 7], respectively). In contrast, the 

intramolecular bondlengths are somewhat surprising. For example, the C=C bondlength of 1.41 Å is 0.07 

Å longer than the standard value, and the C-C bondlengths of 1.76 and 1.38 Å are 0.22 Å longer and 0.16 

Å shorter, respectively, than the standard C-C bondlength [24]. It should be noted, however, that the error 

bars on these parameters are rather large (see Table 3), and that they encompass more typical values. The 

substrate parameters also show some variation compared to previous results. The two Si dimers were 

found to move approximately 1.00 (+0.40/-0.31) Å closer together, relative to their spacing on the clean 

surface, and the dimer which interacts with the C2-C3 bond is shortened to 2.06 (+0.44/-0.76) Å while that 

interacting with the C1 and C4 atoms is lengthened to 2.65±0.35 Å. Overall, our structural parameters for 

the TB species tend to suggest that both the benzene molecule and the substrate are more distorted in this 

configuration than in the SB form, although the magnitude of the error bars precludes us making a 

definitive statement. Bearing in mind that when the benzene molecule tilts over from the SB form, to 

produce the TB species, there is considerable mismatch between the positions of the Si and C atoms in the 

unrelaxed species, some distortion is to be expected.   
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5. Conclusions 

Using scanned-energy mode photoelectron diffraction we have shown that the saturated monolayer of 

benzene on Si(001)-(2x1) contains both 'standard butterfly' and 'tilted bridge' forms of benzene, with a 

composition of 58±29% of the SB species. Detailed structural parameter values have been obtained for 

both species, including Si-C bondlengths and out of plane tilt angles of the benzene molecules, both with 

quite a high degree of precision. Intramolecular bondlengths and Si dimer bondlengths and separations 

have also been determined, but with less precision. The results for the SB species agree well with previous 

theoretical studies. The structural parameters for the TB species suggest considerable distortion of both the 

benzene molecule and the Si substrate. Our conclusion regarding the co-occupation of the SB and TB 

adsorbed species is consistent with the results of several previous studies by other methods, suggesting 

that at high coverage benzene initially adsorbs on this surface in the SB form at room temperature, but 

then partially converts to the TB form with time. If the extent of this conversion is based purely on the 

relative adsorption energies of these two forms, our results indicate that the difference in the Gibbs free 

energy of adsorption, (G(TB) - G(SB)), is in the range -0.023 to +0.049 eV. We suggest, however, that 

the reason that the conversion is not complete may also be due to a combination of steric effects and a 

sensitivity of the adsorption energies of the adsorbed SB and TB forms to the nature of the surrounding 

benzene molecules. 
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