16,630 research outputs found
Sequential Voting Promotes Collective Discovery in Social Recommendation Systems
One goal of online social recommendation systems is to harness the wisdom of
crowds in order to identify high quality content. Yet the sequential voting
mechanisms that are commonly used by these systems are at odds with existing
theoretical and empirical literature on optimal aggregation. This literature
suggests that sequential voting will promote herding---the tendency for
individuals to copy the decisions of others around them---and hence lead to
suboptimal content recommendation. Is there a problem with our practice, or a
problem with our theory? Previous attempts at answering this question have been
limited by a lack of objective measurements of content quality. Quality is
typically defined endogenously as the popularity of content in absence of
social influence. The flaw of this metric is its presupposition that the
preferences of the crowd are aligned with underlying quality. Domains in which
content quality can be defined exogenously and measured objectively are thus
needed in order to better assess the design choices of social recommendation
systems. In this work, we look to the domain of education, where content
quality can be measured via how well students are able to learn from the
material presented to them. Through a behavioral experiment involving a
simulated massive open online course (MOOC) run on Amazon Mechanical Turk, we
show that sequential voting systems can surface better content than systems
that elicit independent votes.Comment: To be published in the 10th International AAAI Conference on Web and
Social Media (ICWSM) 201
630-mV open circuit voltage, 12% efficient n-Si liquid junction
We report the first experimental observation of a semiconductor/liquid junction whose open circuit voltage Voc is controlled by bulk diffusion/recombination processes. Variation in temperature, minority-carrier diffusion length, and/or in majority-carrier concentration produces changes in the Voc of the n-Si/CH3OH interface in accord with bulk recombination/diffusion theory. Under AM2 irradiation conditions, the extrapolated intercept at 0 K of Voc vs T plots yields activation energies for the dominant recombination process of 1.1–1.2 eV, in accord with the 1.12-eV band gap of Si. A crucial factor in achieving optimum performance of the n-Si/CH3OH interface is assigned to photoelectrochemical oxide formation, which passivates surface recombination sites at the n-Si/CH3OH interface and minimizes deleterious effects of pinning of the Fermi level at the Si/CH3OH junction. Controlled Si oxide growth, combined with optimization of bulk crystal parameters in accord with diffusion theory, is found to yield improved photoelectrode output parameters, with 12.0±1.5% AM2 efficiencies and AM1 Voc values of 632–640 mV for 0.2-Ω cm Si materials
Junctional sarcoplasmic reticulum motility in adult mouse ventricular myocytes.
Excitation-contraction (EC) coupling is the coordinated process by which an action potential triggers cardiac myocyte contraction. EC coupling is initiated in dyads where the junctional sarcoplasmic reticulum (jSR) is in tight proximity to the sarcolemma of cardiac myocytes. Existing models of EC coupling critically depend on dyad stability to ensure the fidelity and strength of EC coupling, where even small variations in ryanodine receptor channel and voltage-gated calcium channel-α 1.2 subunit separation dramatically alter EC coupling. However, dyadic motility has never been studied. Here, we developed a novel strategy to track specific jSR units in dissociated adult ventricular myocytes using photoactivatable fluorescent proteins. We found that the jSR is not static. Instead, we observed dynamic formation and dissolution of multiple dyadic junctions regulated by the microtubule-associated molecular motors kinesin-1 and dynein. Our data support a model where reproducibility of EC coupling results from the activation of a temporally averaged number of SR Ca2+ release units forming and dissolving SR-sarcolemmal junctions. These findings challenge the long-held view that the jSR is an immobile structure and provide insights into the mechanisms underlying its motility
Preprocessing Solar Images while Preserving their Latent Structure
Telescopes such as the Atmospheric Imaging Assembly aboard the Solar Dynamics
Observatory, a NASA satellite, collect massive streams of high resolution
images of the Sun through multiple wavelength filters. Reconstructing
pixel-by-pixel thermal properties based on these images can be framed as an
ill-posed inverse problem with Poisson noise, but this reconstruction is
computationally expensive and there is disagreement among researchers about
what regularization or prior assumptions are most appropriate. This article
presents an image segmentation framework for preprocessing such images in order
to reduce the data volume while preserving as much thermal information as
possible for later downstream analyses. The resulting segmented images reflect
thermal properties but do not depend on solving the ill-posed inverse problem.
This allows users to avoid the Poisson inverse problem altogether or to tackle
it on each of 10 segments rather than on each of 10 pixels,
reducing computing time by a factor of 10. We employ a parametric
class of dissimilarities that can be expressed as cosine dissimilarity
functions or Hellinger distances between nonlinearly transformed vectors of
multi-passband observations in each pixel. We develop a decision theoretic
framework for choosing the dissimilarity that minimizes the expected loss that
arises when estimating identifiable thermal properties based on segmented
images rather than on a pixel-by-pixel basis. We also examine the efficacy of
different dissimilarities for recovering clusters in the underlying thermal
properties. The expected losses are computed under scientifically motivated
prior distributions. Two simulation studies guide our choices of dissimilarity
function. We illustrate our method by segmenting images of a coronal hole
observed on 26 February 2015
Simultaneous planar growth of amorphous and crystalline Ni silicides
We report a solid-state interdiffusion reaction induced by rapid thermal annealing and vacuum furnace annealing in evaporated Ni/Si bilayers. Upon heat treatment of a Ni film overlaid on a film of amorphous Si evaporated from a graphite crucible, amorphous and crystalline silicide layers grow uniformly side by side as revealed by cross-sectional transmission electron microscopy and backscattering spectrometry. This phenomenon contrasts with the silicide formation behavior previously observed in the Ni-Si system, and constitutes an interesting counterpart of the solid-state interdiffusion-induced amorphization in Ni/Zr thin-film diffusion couples. Carbon impurity contained in the amorphous Si film stabilizes the amorphous phase. Kinetic and thermodynamic factors that account for the experimental findings are discussed
Detecting Unspecified Structure in Low-Count Images
Unexpected structure in images of astronomical sources often presents itself
upon visual inspection of the image, but such apparent structure may either
correspond to true features in the source or be due to noise in the data. This
paper presents a method for testing whether inferred structure in an image with
Poisson noise represents a significant departure from a baseline (null) model
of the image. To infer image structure, we conduct a Bayesian analysis of a
full model that uses a multiscale component to allow flexible departures from
the posited null model. As a test statistic, we use a tail probability of the
posterior distribution under the full model. This choice of test statistic
allows us to estimate a computationally efficient upper bound on a p-value that
enables us to draw strong conclusions even when there are limited computational
resources that can be devoted to simulations under the null model. We
demonstrate the statistical performance of our method on simulated images.
Applying our method to an X-ray image of the quasar 0730+257, we find
significant evidence against the null model of a single point source and
uniform background, lending support to the claim of an X-ray jet
- …