1,204 research outputs found

    Antithrombotic Medication for Cardioembolic Stroke Prevention

    Get PDF
    Embolism of cardiac origin accounts for about 20% of ischemic strokes. Nonvalvular atrial fibrillation is the most frequent cause of cardioembolic stroke. Approximately 1% of population is affected by atrial fibrillation, and its prevalence is growing with ageing in the modern world. Strokes due to cardioembolism are in general severe and prone to early recurrence and have a higher long-term risk of recurrence and mortality. Despite its enormous preventive potential, continuous oral anticoagulation is prescribed for less than half of patients with atrial fibrillation who have risk factors for cardioembolism and no contraindications for anticoagulation. Available evidence does not support routine immediate anticoagulation of acute cardioembolic stroke. Anticoagulation therapy's associated risk of hemorrhage and monitoring requirements have encouraged the investigation of alternative therapies for individuals with atrial fibrillation. New anticoagulants being tested for prevention of stroke are low-molecular-weight heparins (LMWH), unfractionated heparin, factor Xa inhibitors, or direct thrombin inhibitors like dabigatran etexilate and rivaroxaban. The later exhibit stable pharmacokinetics obviating the need for coagulation monitoring or dose titration, and they lack clinically significant food or drug interaction. Moreover, they offer another potential that includes fixed dosing, oral administration, and rapid onset of action. There are several concerns regarding potential harm, including an increased risk for hepatotoxicity, clinically significant bleeding, and acute coronary events. Therefore, additional trials and postmarketing surveillance will be needed

    Angiogenesis, Neurogenesis and Neuroplasticity in Ischemic Stroke

    Get PDF
    Only very little is know about the neurovascular niche after cardioembolic stroke. Three processes implicated in neurorepair: angiogenesis, neurogenesis and synaptic plasticity, would be naturally produced in adult brains, but also could be stimulated through endogen neurorepair phenomena. Angiogenesis stimulation generates new vessels with the aim to increase collateral circulation. Neurogenesis is controlled by intrinsic genetic mechanisms and growth factors but also ambiental factors are important. The leading process of the migrating neural progenitor cells (NPCs) is closely associated with blood vessels, suggesting that this interaction provides directional guidance to the NPCs. These findings suggest that blood vessels play an important role as a scaffold for NPCs migration toward the damaged brain region. DNA microarray technology and blood genomic profiling in human stroke provided tools to investigate the expression of thousands of genes. Critical comparison of gene expression profiles after stroke in humans with those in animal models should lead to a better understanding of the pathophysiology of brain ischaemia. Probably the most important part of early recovery after stroke is limited capacity of penumbra/infarct neurones to recover. It became more clear in the last years, that penumbra is not just passively dying over time but it is also actively recovering. This initial plasticity in majority contributes towards later neurogenesis, angiogenesis and final recovery. Penumbra is a principal target in acute phase of stroke. Thus, the origin of newly formed vessels and the pathogenic role of neovascularization and neurogenesis are important unresolved issues in our understanding of the mechanisms after stroke. Biomaterials for promoting brain protection, repair and regeneration are new hot target. Recently developed biomaterials can enable and increase the target delivery of drugs or therapeutic proteins to the brain, allow cell or tissue transplants to be effectively delivered to the brain and help to rebuild damaged circuits. These new approaches are gaining clear importance because nanotechnology allows better control over material-cell interactions that induce specific developmental processes and cellular responses including differentiation, migration and outgrowth

    Emerging molecular targets for brain repair after stroke.

    Get PDF
    The field of neuroprotection generated consistent preclinical findings of mechanisms of cell death but these failed to be translated into clinics. The approaches that combine the modulation of the inhibitory environment together with the promotion of intrinsic axonal outgrowth needs further work before combined therapeutic strategies will be transferable to clinic trials. It is likely that only when some answers have been found to these issues will our therapeutic efforts meet our expectations. Stroke is a clinically heterogeneous disease and combinatorial treatments require much greater work in pharmacological and toxicological testing. Advances in genetics and results of the Whole Human Genome Project (HGP) provided new unknown information in relation to stroke. Genetic factors are not the only determinants of responses to some diseases. It was recognized early on that "epigenetic" factors were major players in the aetiology and progression of many diseases like stroke. The major players are microRNAs that represent the best-characterized subclass of noncoding RNAs. Epigenetic mechanisms convert environmental conditions and physiological stresses into long-term changes in gene expression and translation. Epigenetics in stroke are in their infancy but offer great promise for better understanding of stroke pathology and the potential viability of new strategies for its treatment

    A Model Analysis of Mechanisms for Radial Microtubular Patterns at Root Hair Initiation Sites

    Get PDF
    Plant cells have two main modes of growth generating anisotropic structures. Diffuse growth where whole cell walls extend in specific directions, guided by anisotropically positioned cellulose fibers, and tip growth, with inhomogeneous addition of new cell wall material at the tip of the structure. Cells are known to regulate these processes via molecular signals and the cytoskeleton. Mechanical stress has been proposed to provide an input to the positioning of the cellulose fibers via cortical microtubules in diffuse growth. In particular, a stress feedback model predicts a circumferential pattern of fibers surrounding apical tissues and growing primordia, guided by the anisotropic curvature in such tissues. In contrast, during the initiation of tip growing root hairs, a star-like radial pattern has recently been observed. Here, we use detailed finite element models to analyze how a change in mechanical properties at the root hair initiation site can lead to star-like stress patterns in order to understand whether a stress-based feedback model can also explain the microtubule patterns seen during root hair initiation. We show that two independent mechanisms, individually or combined, can be sufficient to generate radial patterns. In the first, new material is added locally at the position of the root hair. In the second, increased tension in the initiation area provides a mechanism. Finally, we describe how a molecular model of Rho-of-plant (ROP) GTPases activation driven by auxin can position a patch of activated ROP protein basally along a 2D root epidermal cell plasma membrane, paving the way for models where mechanical and molecular mechanisms cooperate in the initial placement and outgrowth of root hairs.This work was funded by the Knut and Alice Wallenberg Foundation via grant ShapeSystems (KAW 2012.0050) to MG and HJ, the Swedish Research Council (VR2013-4632) to HJ, and the Gatsby Charitable Foundation (GAT3395/PR4) to HJ

    The self-organization of plant microtubules inside the cell volume yields their cortical localization, stable alignment, and sensitivity to external cues.

    Get PDF
    Many cell functions rely on the ability of microtubules to self-organize as complex networks. In plants, cortical microtubules are essential to determine cell shape as they guide the deposition of cellulose microfibrils, and thus control mechanical anisotropy of the cell wall. Here we analyze how, in turn, cell shape may influence microtubule behavior. Building upon previous models that confined microtubules to the cell surface, we introduce an agent model of microtubules enclosed in a three-dimensional volume. We show that the microtubule network has spontaneous aligned configurations that could explain many experimental observations without resorting to specific regulation. In particular, we find that the preferred cortical localization of microtubules emerges from directional persistence of the microtubules, and their interactions with each other and with the stiff wall. We also identify microtubule parameters that seem relatively insensitive to cell shape, such as length or number. In contrast, microtubule array anisotropy depends on local curvature of the cell surface and global orientation follows robustly the longest axis of the cell. Lastly, we find that geometric cues may be overcome, as the network is capable of reorienting toward weak external directional cues. Altogether our simulations show that the microtubule network is a good transducer of weak external polarity, while at the same time, easily reaching stable global configurations

    CD105 positive neovessels are prevalent in early stage carotid lesions, and correlate with the grade in more advanced carotid and coronary plaques

    Get PDF
    10 páginas, 4 figuras, 4 tabla, 1 fichero adicional.Background: Previous studies have demonstrated that expression of CD105 is a sensitive marker and indicator of endothelial cell/microvessel activation and proliferation in aggressive solid tumour growth and atherosclerotic plaque lesions. Since intimal neovascularization contributes significantly to subsequent plaque instability, haemorrhage and rupture.Methods: We have used immunohistochemical analysis to investigate the expression of CD105- positive vessels in both large (carotid) and medium calibre (coronary and middle cerebral artery, MCAs) diseased vessels in an attempt to identify any correlation with plaque growth, stage and complication/type.Results: Here we show, that carotid arteries expressed intimal neovascularization associated with CD105-positive endothelial cells, concomitant with increased inflammation in early stage lesions, preatheroma (I-III) whilst they were not present in coronary plaques of the same grade. Some of these CD105-positive neovessels were immature, thin walled and without smooth muscle cell coverage making them more prone to haemorrhage and rupture. In high-grade lesions, neovessel proliferation was similar in both arterial types and significantly higher numbers of CD105-positive vasa vasorum were associated with plaque regions in coronary arteries. In contrast, although the MCAs exhibited expanded intimas and established plaques, there were very few CD105 positive neovessels.Conclusion: Our results show that CD105 is a useful marker of angiogenesis within adventitial and intimal vessels and suggest the existence of significant differences in the pathological development of atherosclerosis in separate vascular beds which may have important consequences when considering management and treatment of this disease.This work was supported by grant: SAF 2006-07681 from the Ministerio de Educación y Ciencia (MEC) to JK.Peer reviewe

    Controlling the angiogenic switch in developing atherosclerotic plaques: possible targets for therapeutic intervention.

    Get PDF
    Plaque angiogenesis may have an important role in the development of atherosclerosis. Vasa vasorum angiogenesis and medial infiltration provides nutrients to the developing and expanding intima and therefore, may prevent cellular death and contribute to plaque growth and stabilization in early lesions. However in more advanced plaques, inflammatory cell infiltration, and concomitant production of numerous pro-angiogenic cytokines may be responsible for induction of uncontrolled neointimal microvessel proliferation resulting in production of immature and fragile neovessels similar to that seen in tumour development. These could contribute to development of an unstable haemorrhagic rupture-prone environment. Increasing evidence has suggested that the expression of intimal neovessels is directly related to the stage of plaque development, the risk of plaque rupture, and subsequently, the presence of symptomatic disease, the timing of ischemic neurological events and myocardial/cerebral infarction. Despite this, there is conflicting evidence regarding the causal relationship between neovessel expression and plaque thrombosis with some in vivo experimental models suggesting the contrary and as yet, few direct mediators of angiogenesis have been identified and associated with plaque instability in vivo.In recent years, an increasing number of angiogenic therapeutic targets have been proposed in order to facilitate modulation of neovascularization and its consequences in diseases such as cancer and macular degeneration. A complete knowledge of the mechanisms responsible for initiation of adventitial vessel proliferation, their extension into the intimal regions and possible de-novo synthesis of neovessels following differentiation of bone-marrow-derived stem cells is required in order to contemplate potential single or combinational anti-angiogenic therapies. In this review, we will examine the importance of angiogenesis in complicated plaque development, describe the current knowledge of molecular mechanisms of its initiation and maintenance, and discuss possible future anti-angiogenic therapies to control plaque stability

    The Empirical Foundations of Telemedicine Interventions in Primary Care

    Full text link
    Introduction: This article presents the scientific evidence for the merits of telemedicine interventions in primary care. Although there is no uniform and consistent definition of primary care, most agree that it occupies a central role in the healthcare system as first contact for patients seeking care, as well as gatekeeper and coordinator of care. It enables and supports patient-centered care, the medical home, managed care, accountable care, and population health. Increasing concerns about sustainability and the anticipated shortages of primary care physicians have sparked interest in exploring the potential of telemedicine in addressing many of the challenges facing primary care in the United States and the world. Materials and Methods: The findings are based on a systematic review of scientific studies published from 2005 through 2015. The initial search yielded 2,308 articles, with 86 meeting the inclusion criteria. Evidence is organized and evaluated according to feasibility/acceptance, intermediate outcomes, health outcomes, and cost. Results: The majority of studies support the feasibility/acceptance of telemedicine for use in primary care, although it varies significantly by demographic variables, such as gender, age, and socioeconomic status, and telemedicine has often been found more acceptable by patients than healthcare providers. Outcomes data are limited but overall suggest that telemedicine interventions are generally at least as effective as traditional care. Cost analyses vary, but telemedicine in primary care is increasingly demonstrated to be cost-effective. Conclusions: Telemedicine has significant potential to address many of the challenges facing primary care in today's healthcare environment. Challenges still remain in validating its impact on clinical outcomes with scientific rigor, as well as in standardizing methods to assess cost, but patient and provider acceptance is increasingly making telemedicine a viable and integral component of primary care around the world.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140293/1/tmj.2016.0045.pd
    corecore