424 research outputs found

    Dealing with hierarchically clustered data: Missing value analyses and imputations

    Get PDF

    On the relevance of mitochondrial fusions for the accumulation of mitochondrial deletion mutants: A modelling study

    No full text
    The molecular mechanisms underlying the aging process are still unclear, but the clonal accumulation of mitochondrial deletion mutants is one of the prime candidates. An important question for the mitochondrial theory of aging is to discover how defective organelles might be selected at the expense of wild-type mitochondria. We propose that mitochondrial fission and fusion events are of critical importance for resolving this apparent contradiction. We show that the occurrence of fusions removes the problems associated with the idea that smaller DNA molecules accumulate because they replicate in a shorter time – the survival of the tiny (SOT) hypothesis. Furthermore, stochastic simulations of mitochondrial replication, mutation and degradation show that two important experimental findings, namely the overall low mosaic pattern of oxidative phosphorylation (OXPHOS) impaired cells in old organisms and the distribution of deletion sizes, can be reproduced and explained by this hypothesis. Finally, we make predictions that can be tested experimentally to further verify our explanation for the age-related accumulation of mitochondrial deletion mutants

    Mech Ageing Dev

    Get PDF
    Mitochondrial morphology is regulated in many cultured eukaryotic cells by fusion and fission of mitochondria. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. During ageing, mitochondria are undergoing significant changes on the functional and morphological level. The effect of ageing on fusion and fission of mitochondria and consequences of altered fission and fusion activity are still unknown although theoretical models on ageing consider the significance of these processes. Human umbilical vein endothelial cells (HUVECs) have been established as a cell culture model to follow mitochondrial activity and dysfunction during the ageing process. Mitochondria of old and postmitotic HUVECs showed distinct alterations in overall morphology and fine structure, and furthermore, loss of mitochondrial membrane potential. In parallel, a decrease of intact mitochondrial DNA (mtDNA) was observed. Fission and fusion activity of mitochondria were quantified in living cells. Mitochondria of old HUVECs showed a significant and equal decrease of both fusion and fission activity indicating that these processes are sensitive to ageing and could contribute to the accumulation of damaged mitochondria during ageing

    Time evolution of the Partridge-Barton Model

    Full text link
    The time evolution of the Partridge-Barton model in the presence of the pleiotropic constraint and deleterious somatic mutations is exactly solved for arbitrary fecundity in the context of a matricial formalism. Analytical expressions for the time dependence of the mean survival probabilities are derived. Using the fact that the asymptotic behavior for large time tt is controlled by the largest matrix eigenvalue, we obtain the steady state values for the mean survival probabilities and the Malthusian growth exponent. The mean age of the population exhibits a t1t^{-1} power law decayment. Some Monte Carlo simulations were also performed and they corroborated our theoretical results.Comment: 10 pages, Latex, 1 postscript figure, published in Phys. Rev. E 61, 5664 (2000

    Modelling contact mode and frequency of interactions with social network members using the multiple discrete–continuous extreme value model

    Get PDF
    Communication patterns are an integral component of activity patterns and the travel induced by these activities. The present study aims to understand the determinants of the communication patterns (by the modes face-to-face, phone, e-mail and SMS) between people and their social network members. The aim is for this to eventually provide further insights into travel behaviour for social and leisure purposes. A social network perspective brings value to the study and modelling of activity patterns since leisure activities are influenced not only by traditional trip measures such as time and cost but also motivated extensively by the people involved in the activity. By using a multiple discrete-continuous extreme value model (Bhat 2005), we can investigate the means of communication chosen to interact with a given social network member (multiple discrete choices) and the frequency of interaction by each mode (treated as continuous) at the same time. The model also allows us to investigate satiation effects for different modes of communication. Our findings show that in spite of people having increasingly geographically widespread networks and more diverse communication technologies, a strong underlying preference for face-to-face contact remains. In contrast with some of the existing work, we show that travel-related variables at the ego level are less important than specific social determinants which can be considered while making use of social network data

    The Heumann-Hotzel model for aging revisited

    Full text link
    Since its proposition in 1995, the Heumann-Hotzel model has remained as an obscure model of biological aging. The main arguments used against it were its apparent inability to describe populations with many age intervals and its failure to prevent a population extinction when only deleterious mutations are present. We find that with a simple and minor change in the model these difficulties can be surmounted. Our numerical simulations show a plethora of interesting features: the catastrophic senescence, the Gompertz law and that postponing the reproduction increases the survival probability, as has already been experimentally confirmed for the Drosophila fly.Comment: 11 pages, 5 figures, to be published in Phys. Rev.

    Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic cells have evolved various response mechanisms to counteract the deleterious consequences of oxidative stress. Among these processes, metabolic alterations seem to play an important role.</p> <p>Results</p> <p>We recently discovered that yeast cells with reduced activity of the key glycolytic enzyme triosephosphate isomerase exhibit an increased resistance to the thiol-oxidizing reagent diamide. Here we show that this phenotype is conserved in <it>Caenorhabditis elegans </it>and that the underlying mechanism is based on a redirection of the metabolic flux from glycolysis to the pentose phosphate pathway, altering the redox equilibrium of the cytoplasmic NADP(H) pool. Remarkably, another key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is known to be inactivated in response to various oxidant treatments, and we show that this provokes a similar redirection of the metabolic flux.</p> <p>Conclusion</p> <p>The naturally occurring inactivation of GAPDH functions as a metabolic switch for rerouting the carbohydrate flux to counteract oxidative stress. As a consequence, altering the homoeostasis of cytoplasmic metabolites is a fundamental mechanism for balancing the redox state of eukaryotic cells under stress conditions.</p

    SkyMapper and the Southern Sky Survey

    Full text link
    This paper presents the design and science goals for the SkyMapper telescope. SkyMapper is a 1.3m telescope featuring a 5.7 square degree field-of-view Cassegrain imager commissioned for the Australian National University's Research School of Astronomy and Astrophysics. It is located at Siding Spring Observatory, Coonabarabran, NSW, Australia and will see first light in late 2007. The imager possesses 16kx16k 0.5 arcsec pixels. The primary scientific goal of the facility is to perform the Southern Sky Survey, a six colour and multi-epoch (4 hour, 1 day, 1 week, 1 month, 1 year sampling) photometric survey of the southerly 2pi steradians to g~23 mag. The survey will provide photometry to better than 3% global accuracy and astrometry to better than 50 mas. Data will be supplied to the community as part of the Virtual Observatory effort. The survey will take five years to complete

    Virus Replication as a Phenotypic Version of Polynucleotide Evolution

    Full text link
    In this paper we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius, Schuster and Sigmund ("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46 (1985) 239-262), in their study of polynucleotide evolution. By taking into account beneficial effects we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull, Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18 (2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium" and transient. Finally, based on these quantitative results we are able to draw some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text overlap with arXiv:1110.336

    Interferometric imaging with the 32 element Murchison Wide-field Array

    Get PDF
    The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.Comment: Accepted for publication in PASP. This is the draft before journal typesetting corrections and proofs so does contain formatting and journal style errors, also has with lower quality figures for space requirement
    corecore