478 research outputs found

    Consumer Perceptions of Labels and the Willingness to Pay for “Second Generation” Genetically Modified Products

    Get PDF
    Environmental and consumer groups have called for mandatory labeling of genetically modified (GM) food products in the United States, stating that consumers have the “right to know.” But evidence exists suggesting that consumers often cannot correctly interpret the meaning of scientific labels. Herein we use a nonhypothetical field experiment to examine how well consumers interpret GM labels, focusing on the solitary secondgeneration GM product currently on the U.S. market—GM cigarettes. Our results suggest that while consumers pay less for GM cigarettes when they are labeled as GM, these labels seem to be misinforming consumers. This evidence implies that consumers could be better off without mandatory GM labeling

    Study on the pulmonary delivery system of apigenin loaded albumin nanocarriers with antioxidant activity

    Get PDF
    Background: Respiratory diseases are mainly derived from acute and chronic inflammation of the alveoli and bronchi. The pathophysiological mechanisms of pulmonary inflammation mainly arise from oxidative damage that could ultimately lead to acute lung injury (ALI). Apigenin (Api) is a natural polyphenol with prominent antioxidant and anti-inflammatory properties in the lung. Inhalable formulations consist of nanoparticles (NPs) have several advantages over other administration routes therefore this study investigated the application of apigenin loaded bovine serum albumin nanoparticles (BSA-Api-NPs) for pulmonary delivery. Methods: Dry powder formulations of BSA-Api-NPs were prepared by spray drying and characterized by laser diffraction particle sizing, scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction. The influence of dispersibility enhancers(lactose monohydrate and L-leucine) on the in vitro aerosol deposition using a next generation impactor (NGI) was investigated in comparison to excipient-free formulation. The dissolution of Api was determined in simulated lung fluid by using Franz cell apparatus. The antioxidant activity was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH˙) free radical scavenging assay. Results: The encapsulation efficiency and the drug loading was measured to be 82.61 ± 4.56% and 7.51 ± 0.415%. The optimized spray drying conditions were suitable to produce particles with low residual moisture content. The spray dried BSA-Api-NPs possessed good the aerodynamic properties due to small and wrinkled particles with low mass median aerodynamic diameter, high emitted dose and fine particle fraction. The aerodynamic properties was enhanced by leucine and decreased by lactose, however, the dissolution was reversely affected. The DPPH˙ assay confirmed that the antioxidant activity of encapsulated Api was preserved. Conclusion: This study provides evidence to support that albumin nanoparticles 49 are suitable carriers of Api and the use of traditional or novel excipients should be taken into consideration. The developed BSA-Api-NPs is a novel delivery system against lung injury with potential antioxidant activity

    The Photocatalytic Activity of TiO 2

    Get PDF
    In this research different composites of impregnated TiO2 with LTA or FAU zeolites were used as different weight% ratio for photodegradation of organic dye. Normal laboratory UV-lamps were used as a source of UV irradiation. In addition a setup of system of mirrors was used to collect real Jeddah sunlight. A comparison of UV and real sunlight photodegradation activity showed that the real sunlight enhances new centers of active sites exhibiting higher catalytic activity than that of UV irradiated samples

    Impact of Block Length and Temperature over Self-Assembling Behavior of Block Copolymers

    Get PDF
    Self-assembling behavior of block copolymers having water-soluble portion as one of the blocks plays key role in the properties and applications of the copolymers. Therefore, we have synthesized block copolymers of different block length and investigated their self-assembling behavior with reference to concentration and temperature using surface tension and conductance measurement techniques. The results obtained through both techniques concluded that critical micelles concentration (CMC) was decreased from 0.100 to 0.078 g/dL with the increase in length of water insoluble block and 0.100 to 0.068 g/dL for the increased temperature. ΔGmic was also decreased with the increase in temperature of the system, concluding that the micellization process was encouraged with the increase in temperature and block length. However, ΔHmic values were highest for short block length copolymer. The surface excess concentration obtained from surface tension data concluded that it was highest for short block length and vice versa and was increased with the increase in temperature of the system. However, the minimum area per molecule was largest for highest molecular weight copolymers or having longest water insoluble block and decreases with the increase in temperature

    Electric-field-induced nematic-cholesteric transition and 3-D director structures in homeotropic cells

    Full text link
    We study the phase diagram of director structures in cholesteric liquid crystals of negative dielectric anisotropy in homeotropic cells of thickness d which is smaller than the cholesteric pitch p. The basic control parameters are the frustration ratio d/p and the applied voltage U. Fluorescence Confocal Polarising Microscopy allows us to directly and unambiguously determine the 3-D director structures. The results are of importance for potential applications of the cholesteric structures, such as switchable gratings and eyewear with tunable transparency based.Comment: Will be published in Physical Review

    Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course.

    Get PDF
    abstract Background: Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect ofBMI on the epigenome ofmono- cytesand diseasecourseinMS. Methods: Fifty-four therapy-naive Relapsing Remitting (RR)MS patientswith high and normal BMI received clin- ical andMRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-naĂŻve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models ofMS. Findings: Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation ofcell proliferationwere detected in the high BMI group ofMSpatients compared to normal BMI. Cer- amide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group ofMS patients showed a negative correlation be- tween monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models ofMS. Interpretation: High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes

    Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course

    Get PDF
    Background: Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect of BMI on the epigenome of monocytes and disease course in MS. Methods: Fifty-four therapy-naive Relapsing Remitting (RR) MS patients with high and normal BMI received clinical and MRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-na\uefve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models of MS. Findings: Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation of cell proliferation were detected in the high BMI group of MS patients compared to normal BMI. Ceramide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group of MS patients showed a negative correlation between monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models of MS. Interpretation: High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes. Fund: This work was supported by funds from the Friedman Brain Institute, NIH, and Multiple Sclerosis Society

    Control over phase separation and nucleation using a laser-tweezing potential

    Get PDF
    Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid–liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter

    Seniors, and their food handlers and caregivers, need food safety and nutrition education

    Full text link
    Seniors are at greater risk than other adults for foodborne illness, poor nutrition and high rates of nutrition- and lifestyle-related chronic diseases. They also represent a major underserved segment of the UC Cooperative Extension client population. The Make Food Safe for Seniors (MFSFS) initiative assessed food safety and nutrition education needs of fixed-income seniors and food handlers and caregivers serving seniors in 10 California counties. Baseline survey results found unsafe practices by over 50% of the participants in six areas - and by over 65% of participants in three of those areas. After one food safety training, a post-test showed an average knowledge gain of 18.1%; seniors had gained the least knowledge, food handlers had gained some knowledge, and caregivers had gained the most. The unsafe food handling practices of a majority of the study group, as well as poor food behaviors, suggested areas in which education could reinforce or improve food safety, healthy eating and disease prevention practices of seniors, caregivers and food handlers serving seniors
    • …
    corecore