442 research outputs found

    Daytime melatonin and light independently affect human alertness and body temperature

    Get PDF
    Light significantly improves alertness during the night (Cajochen, Sleep Med Rev, 11, 2007 and 453; Ruger et al., AJP Regul Integr Comp Physiol, 290, 2005 and R1413), but results are less conclusive at daytime (Lok et al., J Biol Rhythms, 33, 2018 and 589). Melatonin and core body temperature levels at those times of day may contribute to differences in alerting effects of light. In this experiment, the combined effect of daytime exogenous melatonin administration and light intensity on alertness, body temperature, and skin temperature was studied. The goal was to assess whether (a) alerting effects of light are melatonin dependent, (b) soporific effects of melatonin are mediated via the thermoregulatory system, and (c) light can improve alertness after melatonin-induced sleepiness during daytime. 10 subjects (5 females, 5 males) received melatonin (5 mg) in dim (10 lux) and, on a separate occasion, in bright polychromatic white light (2000 lux). In addition, they received placebo both under dim and bright light conditions. Subjects participated in all four conditions in a balanced order, yielding a balanced within-subject design, lasting from noon to 04:00 pm. Alertness and performance were assessed half hourly, while body temperature and skin temperature were measured continuously. Saliva samples to detect melatonin concentrations were collected half hourly. Melatonin administration increased melatonin concentrations in all subjects. Subjective sleepiness and distal skin temperature increased after melatonin ingestion. Bright light exposure after melatonin administration did not change subjective alertness scores, but body temperature and proximal skin temperature increased, while distal skin temperature decreased. Light exposure did not significantly affect these parameters in the placebo condition. These results indicate that (a) exogenous melatonin administration during daytime increases subjective sleepiness, confirming a role for melatonin in sleepiness regulation, (b) bright light exposure after melatonin ingestion significantly affected thermoregulatory parameters without altering subjective sleepiness, therefore temperature changes seem nonessential for melatonin-induced sleepiness, (c) subjective sleepiness was increased by melatonin ingestion, but bright light administration was not able to improve melatonin-induced sleepiness feelings nor performance. Other (physiological) factors may therefore contribute to differences in alerting effects of light during daytime and nighttime

    Bright light decreases peripheral skin temperature in healthy men:A forced desynchrony study under dim and bright light (II)

    Get PDF
    Human thermoregulation is strictly regulated by the preoptic area of the hypothalamus, which is directly influenced by the suprachiasmatic nucleus (SCN). The main input pathway of the SCN is light. Here, thermoregulatory effects of light were assessed in humans in a forced desynchrony (FD) design. The FD experiment was performed in dim light (DL, 6 lux) and bright white light (BL, 1300 lux) in 8 men in a semi-randomized within-subject design. A 4 × 18 h FD protocol (5 h sleep, 13 h wake) was applied, with continuous core body temperature (CBT) and skin temperature measurements at the forehead, clavicles, navel, palms, foot soles and toes. Skin temperature parameters indicated sleep-wake modulations as well as internal clock variations. All distal skin temperature parameters increased during sleep, when CBT decreased. Light significantly affected temperature levels during the wake phase, with decreased temperature measured at the forehead and toes and increased navel and clavicular skin temperatures. These effects persisted when the lights were turned off for sleep. Circadian amplitude of CBT and all skin temperature parameters decreased significantly during BL exposure. Circadian proximal skin temperatures cycled in phase with CBT, while distal skin temperatures cycled in anti-phase, confirming the idea that distal skin regions reflect heat dissipation and proximal regions approximate CBT. In general, we find that increased light intensity exposure may have decreased heat loss in humans, especially at times when the circadian system promotes sleep

    Bright light increases alertness and not cortisol in healthy men:A forced desynchrony study under dim and bright light (I)

    Get PDF
    Light-induced improvements in alertness are more prominent during nighttime than during the day, suggesting that alerting effects of light may depend on internal clock time or wake duration. Relative contributions of both factors can be quantified using a forced desynchrony (FD) designs. FD designs have only been conducted under dim light conditions (<10 lux) since light above this amount can induce non-uniform phase progression of the circadian pacemaker (also called relative coordination). This complicates the mathematical separation of circadian clock phase from homeostatic sleep pressure effects. Here we investigate alerting effects of light in a novel 4 × 18 h FD protocol (5 h sleep, 13 h wake) under dim (6 lux) and bright light (1300 lux) conditions. Hourly saliva samples (melatonin and cortisol assessment) and 2-hourly test sessions were used to assess effects of bright light on subjective and objective alertness (electroencephalography and performance). Results reveal (1) stable free-running cortisol rhythms with uniform phase progression under both light conditions, suggesting that FD designs can be conducted under bright light conditions (1300 lux), (2) subjective alerting effects of light depend on elapsed time awake but not circadian clock phase, while (3) light consistently improves objective alertness independent of time awake or circadian clock phase. Reconstructing the daily time course by combining circadian clock phase and wake duration effects indicates that performance is improved during daytime, while subjective alertness remains unchanged. This suggests that high-intensity indoor lighting during the regular day might be beneficial for mental performance, even though this may not be perceived as such

    Bright light during wakefulness improves sleep quality in healthy men:A forced desynchrony study under dim and bright light (III)

    Get PDF
    Under real-life conditions, increased light exposure during wakefulness seems associated with improved sleep quality, quantified as reduced time awake during bed time, increased time spent in non-rapid eye movement (NREM) sleep, or increased power of the electroencephalogram delta band (0.5-4 Hz). The causality of these important relationships and their dependency on circadian phase and/or time awake has not been studied in depth. To disentangle possible circadian and homeostatic interactions, we employed a forced desynchrony protocol under dim light (6 lux) and under bright light (1300 lux) during wakefulness. Our protocol consisted of a fast cycling sleep-wake schedule (13 h wakefulness-5 h sleep; 4 cycles), followed by 3 h recovery sleep in a within-subject cross-over design. Individuals (8 men) were equipped with 10 polysomnography electrodes. Subjective sleep quality was measured immediately after wakening with a questionnaire. Results indicated that circadian variation in delta power was only detected under dim light. Circadian variation in time in rapid eye movement (REM) sleep and wakefulness were uninfluenced by light. Prior light exposure increased accumulation of delta power and time in NREM sleep, while it decreased wakefulness, especially during the circadian wake phase (biological day). Subjective sleep quality scores showed that participants rated their sleep quality better after bright light exposure while sleeping when the circadian system promoted wakefulness. These results suggest that high environmental light intensity either increases sleep pressure buildup during wakefulness or prevents the occurrence of micro-sleep, leading to improved quality of subsequent sleep

    Low-temperature specific heat and thermal conductivity of glycerol

    Full text link
    We have measured the thermal conductivity of glassy glycerol between 1.5 K and 100 K, as well as the specific heat of both glassy and crystalline phases of glycerol between 0.5 K and 25 K. We discuss both low-temperature properties of this typical molecular glass in terms of the soft-potential model. Our finding of an excellent agreement between its predictions and experimental data for these two independent measurements constitutes a robust proof of the capabilities of the soft-potential model to account for the low-temperature properties of glasses in a wide temperature range.Comment: 4 pages, 3 figures. To be published in Phys. Rev. B (2002

    Prominent Plasmacytosis Following Intravenous Immunoglobulin Correlates with Clinical Improvement in Guillain-Barré Syndrome

    Get PDF
    BACKGROUND: High doses of pooled polyclonal IgG are commonly used to treat numerous autoimmune diseases. Their mode of action nevertheless remains only partially explained. At the same time, until now, no early biological marker has been able to predict their efficacy. METHODOLOGY/PRINCIPAL FINDINGS: In a first pilot retrospective analysis, we reviewed white blood cell counts and blood smears in consecutive patients with autoimmune disease (n = 202) and non-autoimmune disease (n = 104). Autoimmune patients received either intravenous immunoglobulin (IVIg, n = 103), plasma exchange (n = 78) or no specific treatment (n = 21). We then prospectively monitored consecutive autoimmune patients with IVIg injection (n = 67), or without any specific treatment (n = 10) using the same routine laboratory tests, as well as flow cytometry. Both retrospective and prospective analyses identified large plasma-cell mobilization exclusively in IVIg-treated autoimmune patients 7 days after initiation of treatment. The majority of IVIg-mobilized plasma cells were immature HLA-DR(high)/CD138(low)/CXCR4(low) plasma cells expressing intracellular immunoglobulin G which were neither IVIg- nor human IgG-specific. Importantly, we found a strong negative correlation between the absolute number of IVIg-mobilized plasma cells and time to improve neurological function in both retrospective and prospective studies of Guillain-Barré syndrome (GBS), (r = -0.52, p = 0.0031, n = 30, r = -0.47, p = 0.0028, n = 40, respectively). CONCLUSIONS/SIGNIFICANCE: IVIg promotes immature plasma-cell mobilization in patients with GBS, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis and inflammatory myopathy. Prominent day 7 plasma-cell mobilization is a favourable prognostic marker in patients with GBS receiving IVIg treatment

    Integrated, multidisciplinary care for hand eczema: design of a randomized controlled trial and cost-effectiveness study

    Get PDF
    Background: The individual and societal burden of hand eczema is high. Literature indicates that moderate to severe hand eczema is a disease with a poor prognosis. Many patients are hampered in their daily activities, including work. High costs are related to high medical consumption, productivity loss and sick leave. Usual care is suboptimal, due to a lack of optimal instruction and coordination of care, and communication with the general practitioner/occupational physician and people involved at the workplace. Therefore, an integrated, multidisciplinary intervention involving a dermatologist, a care manager, a specialized nurse and a clinical occupational physician was developed. This paper describes the design of a study to investigate the effectiveness and cost-effectiveness of integrated care for hand eczema by a multidisciplinary team, coordinated by a care manager, consisting of instruction on avoiding relevant contact factors, both in the occupational and in the private environment, optimal skin care and treatment, compared to usual, dermatologist-led care. Methods: The study is a multicentre, randomized, controlled trial with an economic evaluation alongside. The study population consists of patients with chronic, moderate to severe hand eczema, who visit an outpatient clinic of one of the participating 5 (three university and two general) hospitals. Integrated, multidisciplinary care, coordinated by a care manager, including allergo-dermatological evaluation by a dermatologist, occupational intervention by a clinical occupational physician, and counselling by a specialized nurse on optimizing topical treatment and skin care will be compared with usual care by a dermatologist. The primary outcome measure is the cumulative difference in reduction of the clinical severity score HECSI between the groups. Secondary outcome measures are the patient's global assessment, specific quality of life with regard to the hands, generic quality of life, sick leave and patient satisfaction. An economic evaluation will be conducted alongside the RCT. Direct and indirect costs will be measured. Outcome measures will be assessed at baseline and after 4, 12, 26 and 52 weeks. All statistical analyses will be performed on the intention-to-treat principle. In addition, per protocol analyses will be carried out. Discussion: To improve societal participation of patients with moderate to severe hand eczema, an integrated care intervention was developed involving both person-related and environmental factors. Such integrated care is expected to improve the patients' clinical signs, quality of life and to reduce sick leave and medical costs. Results will become available in 2011
    • …
    corecore