114 research outputs found

    Combined Lysis of Thrombus with Ultrasound and Systemic Tissue Plasminogen Activator for Emergent Revascularization in Acute Ischemic Stroke (Clotbust-ER): Design and Methodology of a Multinational Phase 3 Trial

    Get PDF
    Background We designed a Phase 3 clinical trial to determine the safety and efficacy of adding transcranial ultrasound using an operator-independent headframe to recombinant tissue-plasminogen-activator for the treatment of acute ischemic stroke. Methods Combined lysis of thrombus with ultrasound and systemic tissue-plasminogen-activator for emergent revascularization in acute ischemic stroke is a randomized, double-blind, placebo-controlled clinical trial that will enroll subjects with the following main inclusion criteria: less than 4·5 hours from symptom onset (three-hours in US and Canada), age 18–80 years, baseline National Institutes of Health Stroke Scale score ≥ 10, and premorbid modified-Rankin-score of 0–1, eligibility for full dose recombinant tissue-plasminogen-activator. Subjects will receive two-hours of 2-MHz pulsed wave transcranial ultrasound (target group) or sham ultrasound (control group). The projected sample size is approximately 824 subjects. Results The primary endpoint, based on intention-to-treat criteria of patients enrolled within three-hours of symptom onset is the comparison between target and control groups of modified-Rankin-score scores at day 90 poststroke assessed using the proportional odds method. The study will have two planned interim analyses after approximately one-third and two-thirds of subjects have reached the 90-day modified-Rankin-score evaluation. Safety outcomes are symptomatic intracranial hemorrhage within 24 h and an overall analysis of adverse events. Conclusions Since intravenous recombinant tissue-plasminogen-activator remains the only medical therapy to reverse ischemic stroke applicable in the emergency department, our trial will determine if the additional use of transcranial ultrasound improves functional outcomes in patients with severe acute ischemic stroke (NCT#01098981)

    Prospective study on the mismatch concept in acute stroke patients within the first 24 h after symptom onset - 1000Plus study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mismatch between diffusion weighted imaging (DWI) lesion and perfusion imaging (PI) deficit volumes has been used as a surrogate of ischemic penumbra. This pathophysiology-orientated patient selection criterion for acute stroke treatment may have the potential to replace a fixed time window. Two recent trials - DEFUSE and EPITHET - investigated the mismatch concept in a multicenter prospective approach. Both studies randomized highly selected patients (n = 74/n = 100) and therefore confirmation in a large consecutive cohort is desirable. We here present a single-center approach with a 3T MR tomograph next door to the stroke unit, serving as a bridge from the ER to the stroke unit to screen all TIA and stroke patients. Our primary hypothesis is that the prognostic value of the mismatch concept is depending on the vessel status. Primary endpoint of the study is infarct growth determined by imaging, secondary endpoints are neurological deficit on day 5-7 and functional outcome after 3 months.</p> <p>Methods and design</p> <p>1000Plus is a prospective, single centre observational study with 1200 patients to be recruited. All patients admitted to the ER with the clinical diagnosis of an acute cerebrovascular event within 24 hours after symptom onset are screened. Examinations are performed on day 1, 2 and 5-7 with neurological examination including National Institute of Health Stroke Scale (NIHSS) scoring and stroke MRI including T2*, DWI, TOF-MRA, FLAIR and PI. PI is conducted as dynamic susceptibility-enhanced contrast imaging with a fixed dosage of 5 ml 1 M Gadobutrol. For post-processing of PI, mean transit time (MTT) parametric images are determined by deconvolution of the arterial input function (AIF) which is automatically identified. Lesion volumes and mismatch are measured and calculated by using the perfusion mismatch analyzer (PMA) software from ASIST-Japan. Primary endpoint is the change of infarct size between baseline examination and day 5-7 follow up.</p> <p>Discussions</p> <p>The aim of this study is to describe the incidence of mismatch and the predictive value of PI for final lesion size and functional outcome depending on delay of imaging and vascular recanalization. It is crucial to standardize PI for future randomized clinical trials as for individual therapeutic decisions and we expect to contribute to this challenging task.</p> <p>Trial Registration</p> <p>clinicaltrials.gov NCT00715533</p

    Convergence among Non-Sister Dendritic Branches: An Activity-Controlled Mean to Strengthen Network Connectivity

    Get PDF
    The manner by which axons distribute synaptic connections along dendrites remains a fundamental unresolved issue in neuronal development and physiology. We found in vitro and in vivo indications that dendrites determine the density, location and strength of their synaptic inputs by controlling the distance of their branches from those of their neighbors. Such control occurs through collective branch convergence, a behavior promoted by AMPA and NMDA glutamate receptor activity. At hubs of convergence sites, the incidence of axo-dendritic contacts as well as clustering levels, pre- and post-synaptic protein content and secretion capacity of synaptic connections are higher than found elsewhere. This coupling between synaptic distribution and the pattern of dendritic overlapping results in ‘Economical Small World Network’, a network configuration that enables single axons to innervate multiple and remote dendrites using short wiring lengths. Thus, activity-mediated regulation of the proximity among dendritic branches serves to pattern and strengthen neuronal connectivity

    Acute stroke imaging research roadmap II

    Get PDF
    The recent “Advanced Neuroimaging for Acute Stroke Treatment” meeting on September 7 and 8, 2007 in Washington DC, brought together stroke neurologists, neuroradiologists, emergency physicians, neuroimaging research scientists, members of the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), industry representatives, and members of the US Food and Drug Administration (FDA) to discuss the role of advanced neuroimaging in acute stroke treatment. The goals of the meeting were to assess state-of-the-art practice in terms of acute stroke imaging research and to propose specific recommendations regarding: (1) the standardization of perfusion and penumbral imaging techniques, (2) the validation of the accuracy and clinical utility of imaging markers of the ischemic penumbra, (3) the validation of imaging biomarkers relevant to clinical outcomes, and (4) the creation of a central repository to achieve these goals. The present article summarizes these recommendations and examines practical steps to achieve them

    Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data

    Get PDF
    Background: Patients who have had a stroke with unknown time of onset have been previously excluded from thrombolysis. We aimed to establish whether intravenous alteplase is safe and effective in such patients when salvageable tissue has been identified with imaging biomarkers. Methods: We did a systematic review and meta-analysis of individual patient data for trials published before Sept 21, 2020. Randomised trials of intravenous alteplase versus standard of care or placebo in adults with stroke with unknown time of onset with perfusion-diffusion MRI, perfusion CT, or MRI with diffusion weighted imaging-fluid attenuated inversion recovery (DWI-FLAIR) mismatch were eligible. The primary outcome was favourable functional outcome (score of 0–1 on the modified Rankin Scale [mRS]) at 90 days indicating no disability using an unconditional mixed-effect logistic-regression model fitted to estimate the treatment effect. Secondary outcomes were mRS shift towards a better functional outcome and independent outcome (mRS 0–2) at 90 days. Safety outcomes included death, severe disability or death (mRS score 4–6), and symptomatic intracranial haemorrhage. This study is registered with PROSPERO, CRD42020166903. Findings: Of 249 identified abstracts, four trials met our eligibility criteria for inclusion: WAKE-UP, EXTEND, THAWS, and ECASS-4. The four trials provided individual patient data for 843 individuals, of whom 429 (51%) were assigned to alteplase and 414 (49%) to placebo or standard care. A favourable outcome occurred in 199 (47%) of 420 patients with alteplase and in 160 (39%) of 409 patients among controls (adjusted odds ratio [OR] 1·49 [95% CI 1·10–2·03]; p=0·011), with low heterogeneity across studies (I2=27%). Alteplase was associated with a significant shift towards better functional outcome (adjusted common OR 1·38 [95% CI 1·05–1·80]; p=0·019), and a higher odds of independent outcome (adjusted OR 1·50 [1·06–2·12]; p=0·022). In the alteplase group, 90 (21%) patients were severely disabled or died (mRS score 4–6), compared with 102 (25%) patients in the control group (adjusted OR 0·76 [0·52–1·11]; p=0·15). 27 (6%) patients died in the alteplase group and 14 (3%) patients died among controls (adjusted OR 2·06 [1·03–4·09]; p=0·040). The prevalence of symptomatic intracranial haemorrhage was higher in the alteplase group than among controls (11 [3%] vs two [&lt;1%], adjusted OR 5·58 [1·22–25·50]; p=0·024). Interpretation: In patients who have had a stroke with unknown time of onset with a DWI-FLAIR or perfusion mismatch, intravenous alteplase resulted in better functional outcome at 90 days than placebo or standard care. A net benefit was observed for all functional outcomes despite an increased risk of symptomatic intracranial haemorrhage. Although there were more deaths with alteplase than placebo, there were fewer cases of severe disability or death. Funding: None

    Neurobeachin Regulates Glutamate- and GABA-Receptor Targeting to Synapses via Distinct Pathways

    Get PDF
    Neurotransmission and synaptic strength depend on expression of post-synaptic receptors on the cell surface. Post-translational modification of receptors, trafficking to the synapse through the secretory pathway, and subsequent insertion into the synapse involves interaction of the receptor with A-kinase anchor proteins (AKAPs) and scaffolding proteins. Neurobeachin (Nbea), a brain specific AKAP, is required for synaptic surface expression of both glutamate and GABA receptors. Here, we investigated the role of Nbea-dependent targeting of postsynaptic receptors by studying Nbea interaction with synapse-associated protein 102 (SAP102/Dlg3) and protein kinase A subunit II (PKA II). A Nbea mutant lacking the PKA binding domain showed a similar distribution as wild-type Nbea in Nbea null neurons and partially restored GABA receptor surface expression. To understand the relevance of Nbea interaction with SAP102, we analysed SAP102 null mutant mice. Nbea levels were reduced by ~80 % in SAP102 null mice, but glutamatergic receptor expression was normal. A single-point mutation in the pleckstrin homology domain of Nbea (E2218R) resulted in loss of binding with SAP102. When expressed in Nbea null neurons, this mutant fully restored GABA receptor surface expression, but not glutamate receptor expression. Our results suggest that the PKA-binding domain is not essential for Nbea’s role in receptor targeting and that Nbea targets glutamate and GABA receptors to the synapse via distinct molecular pathways by interacting with specific effector proteins
    corecore