66 research outputs found

    Characterization of young and aged ferrets as animal models for SARS-CoV-2 infection with focus on neutrophil extracellular traps

    Get PDF
    Neutrophil extracellular traps (NETs) are net-like structures released by activated neutrophils upon infection [e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] as part of the innate immune response that have protective effects by pathogen entrapment and immobilization or result in detrimental consequences for the host due to the massive release of NETs and their impaired degradation by nucleases like DNase-1. Higher amounts of NETs are associated with coronavirus disease 2019 (COVID-19) severity and are a risk factor for severe disease outcome. The objective of our study was to investigate NET formation in young versus aged ferrets to evaluate their value as translational model for SARS-CoV-2-infection and to correlate different NET markers and virological parameters. In each of the two groups (young and aged), nine female ferrets were intratracheally infected with 1 mL of 106 TCID50/mL SARS-CoV-2 (BavPat1/2020) and euthanized at 4, 7, or 21 days post-infection. Three animals per group served as negative controls. Significantly more infectious virus and viral RNA was found in the upper respiratory tract of aged ferrets. Interestingly, cell-free DNA and DNase-1 activity was generally higher in bronchoalveolar lavage fluid (BALF) but significantly lower in serum of aged compared to young ferrets. In accordance with these data, immunofluorescence microscopy revealed significantly more NETs in lungs of aged compared to young infected ferrets. The association of SARS-CoV-2-antigen in the respiratory mucosa and NET markers in the nasal conchae, but the absence of virus antigen in the lungs, confirms the nasal epithelium as the major location for virus replication as described for young ferrets. Furthermore, a strong positive correlation was found between virus shedding and cell-free DNA or the level of DNAse-1 activity in aged ferrets. Despite the increased NET formation in infected lungs of aged ferrets, the animals did not show a strong NET phenotype and correlation among tested NET markers. Therefore, ferrets are of limited use to study SARS-CoV-2 pathogenesis associated with NET formation. Nevertheless, the mild to moderate clinical signs, virus shedding pattern, and the lung pathology of aged ferrets confirm those animals as a relevant model to study age-dependent COVID-19 pathogenesis

    M1T1 group A streptococcal pili promote epithelial colonization but diminish systemic virulence through neutrophil extracellular entrapment

    Get PDF
    Group A Streptococcus is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Cell wall anchored pili were recently described in several species of pathogenic streptococci, and in the case of GAS, these surface appendages were demonstrated to facilitate epithelial cell adherence. Here we use targeted mutagenesis to evaluate the contribution of pilus expression to virulence of the globally disseminated M1T1 GAS clone, the leading agent of both GAS pharyngitis and severe invasive infections. We confirm that pilus expression promotes GAS adherence to pharyngeal cells, keratinocytes, and skin. However, in contrast to findings reported for group B streptococcal and pneumococcal pili, we observe that pilus expression reduces GAS virulence in murine models of necrotizing fasciitis, pneumonia and sepsis, while decreasing GAS survival in human blood. Further analysis indicated the systemic virulence attenuation associated with pilus expression was not related to differences in phagocytic uptake, complement deposition or cathelicidin antimicrobial peptide sensitivity. Rather, GAS pili were found to induce neutrophil IL-8 production, promote neutrophil transcytosis of endothelial cells, and increase neutrophil release of DNA-based extracellular traps, ultimately promoting GAS entrapment and killing within these structures

    Catheter Colonization and Abscess Formation Due to Staphylococcus epidermidis with Normal and Small-Colony-Variant Phenotype Is Mouse Strain Dependent

    Get PDF
    Coagulase-negative staphylococci (CoNS) form a thick, multilayered biofilm on foreign bodies and are a major cause of nosocomial implant-associated infections. Although foreign body infection models are well-established, limited in vivo data are available for CoNS with small-colony-variant (SCV) phenotype described as causative agents in implant-associated infections. Therefore, we investigated the impact of the Staphylococcus epidermidis phenotype on colonization of implanted PVC catheters and abscess formation in three different mouse strains. Following introduction of a catheter subcutaneously in each flank of 8- to 12-week-old inbred C57BL/6JCrl (B6J), outbred Crl:CD1(ICR) (CD-1), and inbred BALB/cAnNCrl (BALB/c) male mice, doses of S. epidermidis O-47 wild type, its hemB mutant with stable SCV phenotype, or its complemented mutant at concentrations of 106 to 109 colony forming units (CFUs) were gently spread onto each catheter. On day 7, mice were sacrificed and the size of the abscesses as well as bacterial colonization was determined. A total of 11,500 CFUs of the complemented mutant adhered to the catheter in BALB/c followed by 9,960 CFUs and 9,900 CFUs from S. epidermidis wild type in BALB/c and CD-1, respectively. SCV colonization was highest in CD-1 with 9,500 CFUs, whereas SCVs were not detected in B6J. The minimum dose that led to colonization or abscess formation in all mouse strains was 107 or 108 CFUs of the normal phenotype, respectively. A minimum dose of 108 or 109 CFU of the hemB mutant with stable SCV phenotype led to colonization only or abscess formation, respectively. The largest abscesses were detected in BALB/c inoculated with wild type bacteria or SCV (64 mm2 vs. 28 mm2). Our results indicate that colonization and abscess formation by different phenotypes of S. epidermidis in a foreign body infection model is most effective in inbred BALB/c followed by outbred CD-1 and inbred B6J mice

    Two Genes on A/J Chromosome 18 Are Associated with Susceptibility to Staphylococcus aureus Infection by Combined Microarray and QTL Analyses

    Get PDF
    Although it has recently been shown that A/J mice are highly susceptible to Staphylococcus aureus sepsis as compared to C57BL/6J, the specific genes responsible for this differential phenotype are unknown. Using chromosome substitution strains (CSS), we found that loci on chromosomes 8, 11, and 18 influence susceptibility to S. aureus sepsis in A/J mice. We then used two candidate gene selection strategies to identify genes on these three chromosomes associated with S. aureus susceptibility, and targeted genes identified by both gene selection strategies. First, we used whole genome transcription profiling to identify 191 (56 on chr. 8, 100 on chr. 11, and 35 on chr. 18) genes on our three chromosomes of interest that are differentially expressed between S. aureus-infected A/J and C57BL/6J. Second, we identified two significant quantitative trait loci (QTL) for survival post-infection on chr. 18 using N2 backcross mice (F1 [C18A]×C57BL/6J). Ten genes on chr. 18 (March3, Cep120, Chmp1b, Dcp2, Dtwd2, Isoc1, Lman1, Spire1, Tnfaip8, and Seh1l) mapped to the two significant QTL regions and were also identified by the expression array selection strategy. Using real-time PCR, 6 of these 10 genes (Chmp1b, Dtwd2, Isoc1, Lman1, Tnfaip8, and Seh1l) showed significantly different expression levels between S. aureus-infected A/J and C57BL/6J. For two (Tnfaip8 and Seh1l) of these 6 genes, siRNA-mediated knockdown of gene expression in S. aureus–challenged RAW264.7 macrophages induced significant changes in the cytokine response (IL-1 β and GM-CSF) compared to negative controls. These cytokine response changes were consistent with those seen in S. aureus-challenged peritoneal macrophages from CSS 18 mice (which contain A/J chromosome 18 but are otherwise C57BL/6J), but not C57BL/6J mice. These findings suggest that two genes, Tnfaip8 and Seh1l, may contribute to susceptibility to S. aureus in A/J mice, and represent promising candidates for human genetic susceptibility studies

    Neutrophil responses to Aspergillosis : new roles for old players

    Get PDF
    Neutrophils are professional phagocytic cells that play a crucial role in innate immunity. Through an assortment of antifungal effector mechanisms, neutrophils are essential in controlling the early stages of fungal infection. These mechanisms range from the production of reactive oxygen intermediates and release of antimicrobial enzymes to the formation of complex extracellular traps that aid in the elimination of the fungus. Their importance in antifungal immunity is supported by the extreme susceptibility to infection of patients with primary (e.g., chronic granulomatous disease) or acquired (e.g., undergoing immunosuppressive therapy) neutrophil deficiency. More recently, common genetic variants affecting neutrophil antifungal capacity have also been disclosed as major risk factors for aspergillosis in conditions of generalized immune deficiency. The present review revisits the role of neutrophils in the host response against Aspergillus and highlights the consequences of their deficiency in susceptibility to aspergillosis.This work was supported by a Research Grant from the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Cristina Cunha was supported by the Fundacao para a Ciencia e Tecnologia, Portugal (contract SFRH/BPD/96176/2013)

    The Rise of Three Rs Centres and Platforms in Europe*

    Get PDF
    Public awareness and discussion about animal experiments and replacement methods has greatly increased in recent years. The term 'the Three Rs', which stands for the Replacement, Reduction and Refinement of animal experiments, is inseparably linked in this context. A common goal within the Three Rs scientific community is to develop predictive non-animal models and to better integrate all available data from in vitro, in silico and omics technologies into regulatory decision-making processes regarding, for example, the toxicity of chemicals, drugs or food ingredients. In addition, it is a general concern to implement (human) non-animal methods in basic research. Toward these efforts, there has been an ever-increasing number of Three Rs centres and platforms established over recent years - not only to develop novel methods, but also to disseminate knowledge and help to implement the Three Rs principles in policies and education. The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes gave a strong impetus to the creation of Three Rs initiatives, in the form of centres and platforms. As the first of a series of papers, this article gives an overview of the European Three Rs centres and platforms, and their historical development. The subsequent articles, to be published over the course of ATLA's 50th Anniversary year, will summarise the current focus and tasks as well as the future and the plans of the Three Rs centres and platforms. The Three Rs centres and platforms are very important points of contact and play an immense role in their respective countries as 'on the ground' facilitators of Directive 2010/63/EU. They are also invaluable for the widespread dissemination of information and for promoting implementation of the Three Rs in general

    The Current Status and Work of Three Rs Centres and Platforms in Europe*

    Get PDF
    The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes has given a major push to the formation of Three Rs initiatives in the form of centres and platforms. These centres and platforms are dedicated to the so-called Three Rs, which are the Replacement, Reduction and Refinement of animal use in experiments. ATLA's 50th Anniversary year has seen the publication of two articles on European Three Rs centres and platforms. The first of these was about the progressive rise in their numbers and about their founding history; this second part focuses on their current status and activities. This article takes a closer look at their financial and organisational structures, describes their Three Rs focus and core activities (dissemination, education, implementation, scientific quality/translatability, ethics), and presents their areas of responsibility and projects in detail. This overview of the work and diverse structures of the Three Rs centres and platforms is not only intended to bring them closer to the reader, but also to provide role models and show examples of how such Three Rs centres and platforms could be made sustainable. The Three Rs centres and platforms are very important focal points and play an immense role as facilitators of Directive 2010/63/EU 'on the ground' in their respective countries. They are also invaluable for the wide dissemination of information and for promoting the implementation of the Three Rs in general

    The Pleiotropic CymR Regulator of Staphylococcus aureus Plays an Important Role in Virulence and Stress Response

    Get PDF
    We have characterized a novel pleiotropic role for CymR, the master regulator of cysteine metabolism. We show here that CymR plays an important role both in stress response and virulence of Staphylococcus aureus. Genes involved in detoxification processes, including oxidative stress response and metal ion homeostasis, were differentially expressed in a ΔcymR mutant. Deletion of cymR resulted in increased sensitivity to hydrogen peroxide-, disulfide-, tellurite- and copper-induced stresses. Estimation of metabolite pools suggests that this heightened sensitivity could be the result of profound metabolic changes in the ΔcymR mutant, with an increase in the intracellular cysteine pool and hydrogen sulfide formation. Since resistance to oxidative stress within the host organism is important for pathogen survival, we investigated the role of CymR during the infectious process. Our results indicate that the deletion of cymR promotes survival of S. aureus inside macrophages, whereas virulence of the ΔcymR mutant is highly impaired in mice. These data indicate that CymR plays a major role in virulence and adaptation of S. aureus for survival within the host
    • …
    corecore