65 research outputs found

    Meson Structure Functions in Valon Model

    Full text link
    Parton distributions in a {\it{valon}} in the next-to-leading order is used to determine the patron distributions in pion and kaon. The validity of the valon model is tested and shown that the partonic content of the valon is universal and independent of the valon type. We have evaluated the valon distribution in pion and kaon, and in particular it is shown that the results are in good agreement with the experimental data on pion structure in a wide range of x=[104,1]x=[10^{-4},1]Comment: 13 pages with 7 figures included, The manuscript is revised, figures are added and some errors are corrected. Accepted for publication in Physical Review

    Novel multiplex technology for diagnostic characterization of rheumatoid arthritis

    Get PDF
    Abstract Introduction The aim of this study was to develop a clinical-grade, automated, multiplex system for the differential diagnosis and molecular stratification of rheumatoid arthritis (RA). Methods We profiled autoantibodies, cytokines, and bone-turnover products in sera from 120 patients with a diagnosis of RA of < 6 months' duration, as well as in sera from 27 patients with ankylosing spondylitis, 28 patients with psoriatic arthritis, and 25 healthy individuals. We used a commercial bead assay to measure cytokine levels and developed an array assay based on novel multiplex technology (Immunological Multi-Parameter Chip Technology) to evaluate autoantibody reactivities and bone-turnover markers. Data were analyzed by Significance Analysis of Microarrays and hierarchical clustering software. Results We developed a highly reproducible, automated, multiplex biomarker assay that can reliably distinguish between RA patients and healthy individuals or patients with other inflammatory arthritides. Identification of distinct biomarker signatures enabled molecular stratification of early-stage RA into clinically relevant subtypes. In this initial study, multiplex measurement of a subset of the differentiating biomarkers provided high sensitivity and specificity in the diagnostic discrimination of RA: Use of 3 biomarkers yielded a sensitivity of 84.2% and a specificity of 93.8%, and use of 4 biomarkers a sensitivity of 59.2% and a specificity of 96.3%. Conclusions The multiplex biomarker assay described herein has the potential to diagnose RA with greater sensitivity and specificity than do current clinical tests. Its ability to stratify RA patients in an automated and reproducible manner paves the way for the development of assays that can guide RA therapy.http://deepblue.lib.umich.edu/bitstream/2027.42/116025/1/13075_2010_Article_3144.pd

    Improved Eavesdropping Detection Strategy in Quantum Direct Communication Protocol Based on Four-particle GHZ State

    Full text link
    In order to improve the eavesdropping detection efficiency in two-step quantum direct communication protocol, an improved eavesdropping detection strategy using four-particle GHZ state is proposed, in which four-particle GHZ state is used to detect eavesdroppers. During the security analysis, the method of the entropy theory is introduced, and two detection strategies are compared quantitatively by using the constraint between the information which eavesdropper can obtain and the interference introduced. If the eavesdroppers intend to obtain all information, the eavesdropping detection rate of the original two-step quantum direct communication protocol by using EPR pair block as detection particles is 50%; while the proposed strategy's detection rate is 88%. In the end, the security of the proposed protocol is discussed. The analysis results show that the eavesdropping detection strategy presented is more secure.Comment: 14 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:quant-ph/0308173 by different author

    The fate of carbon in a mature forest under carbon dioxide enrichment

    Get PDF
    Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1 5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3 5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7 10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7 11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests. © 2020, The Author(s), under exclusive licence to Springer Nature Limited
    corecore