87 research outputs found

    NGC 3310, a galaxy merger?

    Get PDF
    The HI structure and kinematics of the peculiar starburst galaxy NGC 3310 (Arp 217, UGC 5786) are discussed. New evidence bearing on the origin of the starburst is presented. The bulk of HI coincides with the bright optical disk and shows differential rotation. Its velocity dispersion is, however, unusually large for a spiral galaxy (up to 40 km/s), suggesting that the disk is highly perturbed as already indicated by optical emission line spectroscopy. There are, in addition, two prominent HI tails, one extending to the north-west and the other, somewhat patchy, to the south. These HI tails, the perturbed kinematics and the peculiar optical morphology strongly suggest a recent merger between two gas-rich galaxies. This seems to have been a major merger in which most of the gas in the inner parts has been preserved in neutral atomic form and either one of the progenitor disks has survived or a new disk has formed.Comment: 10 pages, 11 figures, accepted for publication in A&

    Acatalasemic mice are mildly susceptible to adriamycin nephropathy and exhibit increased albuminuria and glomerulosclerosis

    Get PDF
    Background: Catalase is an important antioxidant enzyme that regulates the level of intracellular hydrogen peroxide and hydroxyl radicals. The effects of catalase deficiency on albuminuria and progressive glomerulosclerosis have not yet been fully elucidated. The adriamycin (ADR) nephropathy model is considered to be an experimental model of focal segmental glomerulosclerosis. A functional catalase deficiency was hypothesized to exacerbate albuminuria and the progression of glomerulosclerosis in this model. Methods: ADR was intravenously administered to both homozygous acatalasemic mutant mice (C3H/AnLCs(b)Cs(b)) and control wild-type mice (C3H/AnLCs(a)Cs(a)). The functional and morphological alterations of the kidneys, including albuminuria, renal function, podocytic, glomerular and tubulointerstitial injuries, and the activities of catalase were then compared between the two groups up to 8 weeks after disease induction. Moreover, the presence of a mutation of the toll-like receptor 4 (tlr4) gene, which was previously reported in the C3H/HeJ strain, was investigated in both groups. Results: The ADR-treated mice developed significant albuminuria and glomerulosclerosis, and the degree of these conditions in the ADR-treated acatalasemic mice was higher than that in the wild-type mice. ADR induced progressive renal fibrosis, renal atrophy and lipid peroxide accumulation only in the acatalasemic mice. In addition, the level of catalase activity was significantly lower in the kidneys of the acatalasemic mice than in the wild-type mice during the experimental period. The catalase activity increased after ADR injection in wild-type mice, but the acatalasemic mice did not have the ability to increase their catalase activity under oxidative stress. The C3H/AnL strain was found to be negative for the tlr4 gene mutation. Conclusions: These data indicate that catalase deficiency plays an important role in the progression of renal injury in the ADR nephropathy model

    Characterization of an OmpA-like outer membrane protein of the acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans

    Get PDF
    An OmpA family protein (FopA) previously reported as one of the major outer membrane proteins of an acidophilic iron-oxidizing bacterium Acidithiobacillus ferrooxidans was characterized with emphasis on the modification by heat and the interaction with peptidoglycan. A 30-kDa band corresponding to the FopA protein was detected in outer membrane proteins extracted at 75°C or heated to 100°C for 10 min prior to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). However, the band was not detected in outer membrane proteins extracted at ≤40°C and without boiling prior to electrophoresis. By Western blot analysis using the polyclonal antibody against the recombinant FopA, FopA was detected as bands with apparent molecular masses of 30 and 90 kDa, suggesting that FopA existed as an oligomeric form in the outer membrane of A. ferrooxidans. Although the fopA gene with a sequence encoding the signal peptide was successfully expressed in the outer membrane of Escherichia coli, the recombinant FopA existed as a monomer in the outer membrane of E. coli. FopA was detected in peptidoglycan-associated proteins from A. ferrooxidans. The recombinant FopA also showed the peptidoglycan-binding activity

    Structure–property relation and relevance of beam theories for microtubules: a coupled molecular and continuum mechanics study

    Get PDF
    Quasi-one-dimensional microtubules (MTs) in cells enjoy high axial rigidity but large transverse flexibility due to the inter-protofilament (PF) sliding. This study aims to explore the structure–property relation for MTs and examine the relevance of the beam theories to their unique features. A molecular structural mechanics (MSM) model was used to identify the origin of the inter-PF sliding and its role in bending and vibration of MTs. The beam models were then fitted to the MSM to reveal how they cope with the distinct mechanical responses induced by the inter-PF sliding. Clear evidence showed that the inter-PF sliding is due to the soft inter-PF bonds and leads to the length-dependent bending stiffness. The Euler beam theory is found to adequately describe MT deformation when the inter-PF sliding is largely prohibited. Nevertheless, neither shear deformation nor the nonlocal effect considered in the ‘more accurate’ beam theories can fully capture the effect of the inter-PF sliding. This reflects the distinct deformation mechanisms between an MT and its equivalent continuous body
    corecore