101 research outputs found

    Genetic and biochemical analysis of the adenylyl cyclase-associated protein, cap, in Schizosaccharomyces pombe

    Get PDF
    We have identified, cloned, and studied a gene, cap, encoding a protein that is associated with adenylyl cyclase in the fission yeast Schizosaccharomyces pombe. This protein shares significant sequence homology with the adenylyl cyclase-associated CAP protein in the yeast Saccharomyces cerevisiae. CAP is a bifunctional protein; the N-terminal domain appears to be involved in cellular responsiveness to RAS, whereas loss of the C-terminal portion is associated with morphological and nutritional defects. S. pombe cap can suppress phenotypes associated with deletion of the C-terminal CAP domain in S. cerevisiae but does not suppress phenotypes associated with deletion of the N-terminal domain. Analysis of cap disruptants also mapped the function of cap to two domains. The functional loss of the C-terminal region of S. pombe cap results in abnormal cellular morphology, slow growth, and failure to grow at 37-degrees-C. Increases in mating and sporulation were observed when the entire gene was disrupted. Overproduction of both cap and adenylyl cyclase results in highly elongated large cells that are sterile and have measurably higher levels of adenylyl cyclase activity. Our results indicate that cap is required for the proper function of S. pombe adenylyl cyclase but that the C-terminal domain of cap has other functions that are shared with the C-terminal domain of S. cerevisiae CAP

    TOR and PKA Pathways Synergize at the Level of the Ste11 Transcription Factor to Prevent Mating and Meiosis in Fission Yeast

    Get PDF
    [Background]: In the fission yeast Schizosaccharomyces pombe, the TOR (target of rapamycin) and PKA (protein kinase A) signaling transduction pathways regulate the expression of genes required for cell growth and sexual differentiation in response to the nutritional environment. Inhibition of Tor2 signaling results in the induction of genes involved in sexual differentiation, and the cells undergo mating and meiosis, even under good nutritional conditions. The same phenotype is observed in mutants in which the PKA pathway is inactive. By contrast, Tor2 overexpression or mutations that hyperactivate PKA signaling impair sexual differentiation, even under poor nutritional conditions. Accordingly, a very important question is to understand the molecular mechanism by which these two pathways coordinately regulate gene expression in response to nutrients. [Methodology/Principal Findings]: Here we demonstrate that TOR and PKA pathways operate coordinately to negatively regulate sexual differentiation by inhibiting the nuclear accumulation of the Ste11 transcription factor. However, the Tor2 pathway is unable to block the nuclear localization of Ste11 under good nutritional conditions when the PKA pathway is inactive. Using microarray analyses, we found that both pathways inhibit sexual differentiation by blocking ste11-dependent gene expression. [Conclusions/Significance]: We conclude that both the PKA and the TOR pathways inhibit Ste11 nuclear accumulation to repress Ste11-dependent gene expression. However, the PKA pathway plays a quantitatively more important role than the TOR pathway in this process.N.V. is supported by a postdoctoral grant from the Carlos III Institute, Ministerio de Sanidad. Our group is supported by grants from la Junta de Castilla y Leon (Grupo de Excelencia grant GR265) and the Spanish Ministry of Science and Innovation (BFU2008-01808 and Consolider Ingenio CSD2007-00015).Peer reviewe

    Effects of Inhibiting CoQ10 Biosynthesis with 4-nitrobenzoate in Human Fibroblasts

    Get PDF
    Coenzyme Q10 (CoQ10) is a potent lipophilic antioxidant in cell membranes and a carrier of electrons in the mitochondrial respiratory chain. We previously characterized the effects of varying severities of CoQ10 deficiency on ROS production and mitochondrial bioenergetics in cells harboring genetic defects of CoQ10 biosynthesis. We observed a unimodal distribution of ROS production with CoQ10 deficiency: cells with <20% of CoQ10 and 50–70% of CoQ10 did not generate excess ROS while cells with 30–45% of CoQ10 showed increased ROS production and lipid peroxidation. Because our previous studies were limited to a small number of mutant cell lines with heterogeneous molecular defects, here, we treated 5 control and 2 mildly CoQ10 deficient fibroblasts with varying doses of 4-nitrobenzoate (4-NB), an analog of 4-hydroxybenzoate (4-HB) and inhibitor of 4-para-hydroxybenzoate:polyprenyl transferase (COQ2) to induce a range of CoQ10 deficiencies. Our results support the concept that the degree of CoQ10 deficiency in cells dictates the extent of ATP synthesis defects and ROS production and that 40–50% residual CoQ10 produces maximal oxidative stress and cell death

    Cell Survival from Chemotherapy Depends on NF-κB Transcriptional Up-Regulation of Coenzyme Q Biosynthesis

    Get PDF
    9 pages and 6 figures.[Background] Coenzyme Q (CoQ) is a lipophilic antioxidant that is synthesized by a mitochondrial complex integrated by at least ten nuclear encoded COQ gene products. CoQ increases cell survival under different stress conditions, including mitochondrial DNA (mtDNA) depletion and treatment with cancer drugs such as camptothecin (CPT). We have previously demonstrated that CPT induces CoQ biosynthesis in mammal cells.[Methodology/Principal Findings] CPT activates NF-κB that binds specifically to two κB binding sites present in the 5′-flanking region of the COQ7 gene. This binding is functional and induces both the COQ7 expression and CoQ biosynthesis. The inhibition of NF-κB activation increases cell death and decreases both, CoQ levels and COQ7 expression induced by CPT. In addition, using a cell line expressing very low of NF-κB, we demonstrate that CPT was incapable of enhancing enhance both CoQ biosynthesis and COQ7 expression in these cells.[Conclusions/Significance] We demonstrate here, for the first time, that a transcriptional mechanism mediated by NF-κB regulates CoQ biosynthesis. This finding contributes new data for the understanding of the regulation of the CoQ biosynthesis pathway.This work was supported by spanish Ministerio de Educacion y Ciencia Grant BFU2005-03017.Peer reviewe

    Cellular factories for coenzyme Q10 production

    Get PDF
    10.1186/s12934-017-0646-4Microbial Cell Factories1613
    corecore