116 research outputs found

    Spinal stabilization for patients with metastatic lesions of the spine using a titanium spacer

    Get PDF
    Anterior decompression in spinal metastases of the corporal type with impending (n=5) or present (n=36) neurological complications was performed in 41 patients. For reconstruction, a titanium cylinder was inserted after spondylectomy and augmented with an anterior plate. The titanium implant can easily be adjusted to the length needed without necessitating expensive additional equipment. Outside the patient the implant is filled with polymethylmetacrylate, facilitating plate transfixation for rotational locking. There was a 30-day mortality of 9.7%. Pain relief was apparent in 38 of 41 patients (92.7%), and motor improvement was manifest in 31 of 35 cases (88.6%). Six patients did not present with any neurological symptoms pre- or postoperatively. Neurological deterioration was registered in only 1 case (2.4%). Surgical efficacy was maintained until the death of the patients. Though tumor recurrence at a different spinal level led to consecutive surgery in 5 patients, no implant dislocation occurred during the observation period (maximum 44 months), characterizing the procedure as a mechanically reliable and safe technique

    Cryogenics for SIS100 Accelerator

    Get PDF

    Operative Behnadlungsstrategien bei Femurmetastasen

    Get PDF
    Weder Deckblatt noch Ihaltsverzeischnis vorhanden

    Uncoupled excitons in semiconductor microcavities detected in resonant Raman scattering

    Get PDF
    We present an outgoing resonant Raman-scattering study of a GaAs/AlGaAs based microcavity embedded in a p-i-n junction. The p-i-n junction allows the vertical electric field to be varied, permitting control of exciton-photon detuning and quenching of photoluminescence which otherwise obscures the inelastic light scattering signals. Peaks corresponding to the upper and lower polariton branches are observed in the resonant Raman cross sections, along with a third peak at the energy of uncoupled excitons. This third peak, attributed to disorder activated Raman scattering, provides clear evidence for the existence of uncoupled exciton reservoir states in microcavities in the strong-coupling regime

    Status of the SIS100 local cryogenics

    Get PDF

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    corecore