50 research outputs found

    Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases

    Get PDF
    The recently discovered histone post-translational modification crotonylation connects cellular metabolism to gene regulation. Its regulation and tissue-specific functions are poorly understood. We characterize histone crotonylation in intestinal epithelia and find that histone H3 crotonylation at lysine 18 is a surprisingly abundant modification in the small intestine crypt and colon, and is linked to gene regulation. We show that this modification is highly dynamic and regulated during the cell cycle. We identify class I histone deacetylases, HDAC1, HDAC2, and HDAC3, as major executors of histone decrotonylation. We show that known HDAC inhibitors, including the gut microbiota-derived butyrate, affect histone decrotonylation. Consistent with this, we find that depletion of the gut microbiota leads to a global change in histone crotonylation in the colon. Our results suggest that histone crotonylation connects chromatin to the gut microbiota, at least in part, via short-chain fatty acids and HDACs

    Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis

    Get PDF
    Background: Colorectal cancer (CRC) is one of the most common malignancies and a leading cause of cancer death worldwide. Most cancer cells display high rates of glycolysis with production of lactic acid, which is then exported to the microenvironment by monocarboxylate transporters (MCTs). The main aim of this study was to evaluate the significance of MCT expression in a comprehensive series of primary CRC cases, lymph node and hepatic metastasis. Methods: Expressions of MCT1, MCT4, CD147 and GLUT1 were studied in human samples of CRC, lymph node and hepatic metastasis, by immunohistochemistry. Results: All proteins were overexpressed in primary CRC, lymph node and hepatic metastasis, when compared with non-neoplastic tissue, with exception of MCT1 in lymph node and hepatic metastasis. MCT1 and MCT4 expressions were associated with CD147 and GLUT1 in primary CRC. These markers were associated with clinical pathological features, reflecting the putative role of these metabolism-related proteins in the CRC setting. Conclusion: These findings provide additional evidence for the pivotal role of MCTs in CRC maintenance and progression, and support the use of MCTs as biomarkers and potential therapeutic targets in primary and metastatic CRC.This work was supported by the Fundação para a Ciência e a Tecnologia (FCT) grant ref. PTDC/SAU-FCF/104347/2008, under the scope of ‘Programa Operacional Temático Factores de Competitividade’ (COMPETE) of ‘Quadro Comunitário de Apoio III’ and co-financed by the Fundo Europeu De Desenvolvimento Regional (FEDER). Ricardo Amorim was recipient of the fellowship SFRH/BD/98002/2013, from Fundação para a Ciência e a Tecnologia (FCT Portugal).info:eu-repo/semantics/publishedVersio

    Annual layers in river-bed sediment of a stagnant river-mouth area of the Kitagawa Brook, Central Japan

    No full text
    The river mouth of Kitagawa Brook is normally stagnant because it is easily closed by sand and gravel transported by littoral currents of Biwa Lake, Japan. A new urban area exists in the basin and sewerage works were constructed in the early 1990s, so contaminated water with a bad odour had flowed into the brook before the sewerage works. To reduce the smell, the river mouth was excavated to narrow the channel in the early 1980s. Thus, river-bed sediment after this excavation only occurs at the river mouth. From the upper 24 cm of a sediment core, we found 19 strata of leaves which were supplied from deciduous trees in autumn. We also found several gravel layers which were supplied from the lake during severe storms. The combination of veins and gravel layers were reconstructed for about 20 years of sediment records with an error of two to three years
    corecore