9,904 research outputs found

    Competing Interactions among Supramolecular Structures on Surfaces

    Full text link
    A simple model was constructed to describe the polar ordering of non-centrosymmetric supramolecular aggregates formed by self assembling triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice with an Ising-like penalty associated with reversing the orientation of nearest neighbor dipoles. The choice of the potentials is based on experimental results and structural features of the supramolecular objects. For films of finite thickness, we find a periodic structure along an arbitrary direction perpendicular to the substrate normal, where the repeat unit is composed of two equal width domains with dipole up and dipole down configuration. When a short range interaction between the surface and the dipoles is included the balance between the up and down dipole domains is broken. Our results suggest that due to surface effects, films of finite thickness have a none zero macroscopic polarization, and that the polarization per unit volume appears to be a function of film thickness.Comment: 3 pages, 3 eps figure

    Lepton Flavor Violation at the Large Hadron Collider

    Get PDF
    We investigate a potential of discovering lepton flavor violation (LFV) at the Large Hadron Collider. A sizeable LFV in low energy supersymmetry can be induced by massive right-handed neutrinos, which can explain neutrino oscillations via the seesaw mechanism. We investigate a scenario where the distribution of an invariant mass of two hadronically decaying taus (\tauh\tauh) from \schizero{2} decays is the same in events with or without LFV. We first develop a transfer function using this ditau mass distribution to model the shape of the non-LFV \tauh\mu invariant mass. We then show the feasibility of extracting the LFV \tauh\mu signal. The proposed technique can also be applied for a LFV \tauh e search.Comment: 8 pages, 6 figures, accepted for publiucation in PR

    Contact Interactions and Resonance-Like Physics at Present and Future Colliders from Unparticles

    Get PDF
    High scale conformal physics can lead to unusual unparticle stuff at our low energies. In this paper we discuss how the exchange of unparticles between Standard Model fields can lead to new contact interaction physics as well as a pseudoresonance-like structure, an unresonance, that might be observable at the Tevatron or LHC in, e.g., the Drell-Yan channel. The specific signatures of this scenario are quite unique and can be used to easily identify this new physics given sufficient integrated luminosity.Comment: 20 pages, 10 figs; minor text changes, ref added; typos correcte

    Prospects for Supersymmetry at LEP2

    Get PDF
    Working within the framework of the minimal supergravity model with gauge coupling unification and radiative electroweak symmetry breaking (SUGRA), we map out regions of parameter space explorable by experiments at LEP2, for center of mass energy options of s=150, 175\sqrt{s}=150,\ 175, 190190 and 205 GeV. We compute signals from all accessible 222 \rightarrow 2 SUSY pair production processes using the ISAJET simulation program, and devise cuts that enhance the signal relative to Standard Model backgrounds, and which also serve to differentiate various supersymmetric processes from one another. We delineate regions of SUGRA parameter space where production of neutralino pairs, chargino pairs, slepton pairs and the production of the light Higgs scalar of SUSY is detectable above Standard Model backgrounds and distinguishable from other SUSY processes. In addition, we find small regions of SUGRA parameter space where \te\te, \tz_2\tz_2 and \tnu_L\tnu_L production yields spectacular events with up to four isolated leptons. The combined regions of parameter space explorable by LEP2 are compared with the reach of Tevatron Main Injector era experiments. Finally, we comment on how the reach via the neutralino pair channel is altered when the radiative electroweak symmetry breaking constraint is relaxed.Comment: 22 page REVTEX file + 9 uuencoded figures; a uuencoded PS file with PS figures is available via anonymous ftp at ftp://hep.fsu.edu/preprints/baer/FSUHEP950501.u

    SUPERSYMMETRY REACH OF AN UPGRADED TEVATRON COLLIDER

    Get PDF
    We examine the capability of a s=2\sqrt{s}=2 TeV Tevatron ppˉp\bar p collider to discover supersymmetry, given a luminosity upgrade to amass 25 fb125\ fb^{-1} of data. We compare with the corresponding reach of the Tevatron Main Injector (1 fb11\ fb^{-1} of data). Working within the framework of minimal supergravity with gauge coupling unification and radiative electroweak symmetry breaking, we first calculate the regions of parameter space accessible via the clean trilepton signal from \tw_1\tz_2\to 3\ell +\eslt production, with detailed event generation of both signal and major physics backgrounds. The trilepton signal can allow equivalent gluino masses of up to mtg600700m_{\tg}\sim 600-700 GeV to be probed if m0m_0 is small. If m0m_0 is large, then mtg500m_{\tg}\sim 500 GeV can be probed for μ0\mu 0 and large values of m0m_0, the rate for \tz_2\to\tz_1\ell\bar{\ell} is suppressed by interference effects, and there is {\it no} reach in this channel. We also examine regions where the signal from \tw_1\overline{\tw_1}\to \ell\bar{\ell}+\eslt is detectable. Although this signal is background limited, it is observable in some regions where the clean trilepton signal is too small. Finally, the signal \tw_1\tz_2\to jets+\ell\bar{\ell} +\eslt can confirm the clean trilepton signal in a substantial subset of the parameter space where the trilepton signal can be seen. We note that although the clean trilepton signal may allow Tevatron experiments to identify signals in regions of parameter space beyond the reach of LEP II, the dilepton channels generally probe much the same region as LEP II.Comment: 19 page REVTEX file; a uuencoded PS file with PS figures is available via anonymous ftp at ftp://hep.fsu.edu/preprints/baer/FSUHEP950301.u

    SIGNALS FOR MINIMAL SUPERGRAVITY AT THE CERN LARGE HADRON COLLIDER: MULTI-JET PLUS MISSING ENERGY CHANNEL,

    Full text link
    We use ISAJET to perform a detailed study of the missing transverse energy \eslt plus multi-jet signal expected from superparticle production at the CERN LHC. Our analysis is performed within the framework of the minimal supergravity model with gauge coupling unification and radiative electroweak symmetry breaking. We delineate the region of parameter space where the \eslt supersymmetry signal should be observable at the LHC and compare it to the regions explorable via searches for sleptons and for chargino/neutralino production. We confirm that, given a data sample of 10~\fb^{-1}, mtg1300m_{\tg}\sim 1300 GeV can be explored if m_{\tq}\gg m_{\tg}, while mtg2000m_{\tg}\sim 2000 GeV can be probed if m_{\tq}\simeq m_{\tg}. We further examine what information can be gleaned from scrutinizing this event sample. For instance, the multi-jet multiplicity yields information on whether squark production makes a significant contribution to the observed \eslt sample. Furthermore, reconstructing hemispheric masses may yield a measure of mtgm_{\tg} to 1525%\sim 15-25\%. Finally, for favourable ranges of parameters, by reconstructing masses of tagged bbˉb\bar{b} jet pairs, it may be possible to detect Higgs bosons produced via sparticle cascade decay chains.Comment: 22 pages (REVTEX); a PS text file (etmiss.ps) and 12 figures (etlhc.uu or etlhc.ps) can be obtained via anonymous ftp at ftp://hep.fsu.edu/anonymous.bae

    Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment

    Get PDF
    The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector

    A novel application of Fiber Bragg Grating (FBG) sensors in MPGD

    Full text link
    We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste, Italy). arXiv admin note: text overlap with arXiv:1512.0848
    corecore