197 research outputs found

    Impact of Implanted Shrapnel-like Pellets on Bone Integrity in Rats after One and Three Months

    Get PDF
    Depleted uranium (DU) and heavy metal tungsten alloys (HTMA), composed of tungsten, nickel, and either cobalt or iron, are used as kinetic energy penetrators in military applications. Due to this use, thousands of military service members experience shrapnel-related injuries. Since surgical removal could cause excessive tissue damage, these fragments are often left in place; however, the long-term health implications of leaving these fragments in the warfighter’s body is poorly understood. Preliminary evidence has shown bone tissue is a primary reservoir for storage of uranium, where it takes the place of calcium in the bone mineral matrix. The purpose of this study was to examine the effects of embedded DU and HTMA pellets on bone mineral density (BMD) and bone mineral content (BMC), key predictors of bone strength, in rat bone. Femurs from male Sprague Dawley rats (~ 20-24 weeks old) had either DU, Tungsten/Nickel/Iron (WNiFe), Tungsten/Nickel/Cobalt (WNiCo), or Tantalum (an inert metal serving as control) pellets inserted intramuscularly (2 pellets/hindlimb). Tissues were collected from 8-10 rats at both 1 month and 3 months following the insertion of the pellets. Distal femur metaphyseal and cortical shaft BMD and BMC were measured via peripheral quantitative computed tomography (pQCT). After one month, cancellous BMD and BMC were were slightly higher in WNiFe and DU compared to WNiCo embedded animals. After three months, there were significant increases in total metaphyseal BMD, cancellous BMD, and total metaphyseal area in DU and WNiCo (p ≤ .001). There were no changes seen in metaphyseal BMC and cortical bone at the midshaft of the femur. This is one of the first studies to examine the effects of shrapnel-like alloys on bone integrity. These data demonstrate that DU and WNiCo increased BMD in the metaphysis; however, if these metals are replacing calcium in the bone matrix, the increased BMD may not be beneficial to bone. As DU becomes more prevalent in the bone matrix, calcium levels may decline, which could cause an increased risk of fractures with age. Therefore, more research is required to determine the impact of these shrapnel metals on bone mechanical properties, fracture risk, and long-term health

    APPLICATION INFORMATION MODELING AND MACHINE LEARNING ALGORITHM FOR CLASSIFICATION OF WASTE USING SUPPORT VECTOR MACHINE

    Get PDF
    The ecological state of the world is deteriorating for the worse every year. One of the main problems is inadequate waste disposal and inadequate sorting by waste type, which has led to inadequate treatment of bulk waste in landfills throughout the world. The issue of improper disposal of municipal solid waste (MSW) in Kazakhstan has been raised since 2013, to solve this problem, the first President of the Republic of Kazakhstan, Nursultan Abishevich Nazarbayev, issued a decree on the transition to a green economy. Under the leadership of the Ministry of Energy, it was planned to reduce the amount of inappropriate waste by 40% in the territory of Kazakhstan by 2030. There are a lot of problems in India like inadequate waste collection, transport, treatment, and disposal. Poorly recyclable garbage has a global impact, fouling oceans, obstructing sewers, and creating flooding, transferring infections, increasing respiratory problems due to burning, injuring animals that inadvertently consume waste, and affecting economic development. To classify garbage, researchers utilized a combination of mixed modeling and machine learning techniques. Using machine learning technology, the data obtained can be used to classify and redistribute garbage for any sector around the world

    Combination Therapy with Radiation and PARP Inhibition Enhances Responsiveness to Anti-PD-1 Therapy in Colorectal Tumor Models.

    Get PDF
    PURPOSE: The majority of colorectal cancers are resistant to cancer immune checkpoint inhibitors. Ionizing radiation (IR) and several radiosensitizers, including PARP inhibitors, can enhance responsiveness to immune checkpoint inhibitors by potentially complementary mechanisms of action. We assessed the ability of radiation and PARP inhibition to induce proimmunogenic changes in tumor cells and enhance their in vivo responsiveness to anti-PD-1 antibodies. METHODS AND MATERIALS: We performed a candidate drug screen and used flow cytometry to assess effects of the PARP inhibitor veliparib on IR-mediated changes in MHC-1 antigen presentation and surface localization of immune-modulating proteins including PD-L1 and calreticulin in colorectal cancer tumor models. Reverse transcription polymerase chain reaction was used to assess the effects of veliparib and radiation on the expression of proinflammatory and immunosuppressive cytokines. The ability of concurrent PARP inhibition and subablative doses of radiation therapy to enhance in vivo responsiveness to anti-PD-1 antibodies was assessed using unilateral flank-tumor models with or without T-cell depletion. RESULTS: Veliparib was a potent radiosensitizer in both cell lines. Radiation increased surface localization of MHC-1 and PD-L1 in a dose-dependent manner, and veliparib pretreatment significantly enhanced these effects with high (8 Gy) but not with lower radiation doses. Enhancement of MHC-1 and PD-L1 surface localization by IR and IR+ veliparib remained significant 1, 3, and 7 days after treatment. IR significantly increased delayed tumoral expression of proinflammatory cytokines interferon-Ƴ and CXCL10 but had no significant effect on the expression of IL-6 or TGF-β. Concurrent administration of veliparib and subablative radiation therapy (8 Gy × 2) significantly prolonged anti-PD-1-mediated in vivo tumor growth delay and survival in both tumor models. Moreover, these effects were more pronounced in the microsatellite instability-mutated MC38 tumor model. Enhancement of anti-PD-1 mediated tumor growth delay with veliparib and IR was attenuated by CD8+ T-cell depletion. CONCLUSIONS: We provide preclinical evidence for a novel therapeutic strategy to enhance responsiveness of colorectal tumors to immune checkpoint inhibitors

    Consolidated Edison Thorium Reactor-Reactor Vessel Internal Components Design

    Get PDF
    The design functions and fabrication details for internal components of the CETR are presented and pertinent analytical stress studies are summarized. Functions of the internal components include proper orientation and support for the fuel elements, proper distribution of primary coolant within the reactor vessel, and the establishment of guide channels for the control rods. (J.R.D.

    Theoretical investigation of carbon defects and diffusion in α-quartz

    Get PDF
    The geometries, formation energies, and diffusion barriers of carbon point defects in silica (α-quartz) have been calculated using a charge-self-consistent density-functional based nonorthogonal tight-binding method. It is found that bonded interstitial carbon configurations have significantly lower formation energies (on the order of 5 eV) than substitutionals. The activation energy of atomic C diffusion via trapping and detrapping in interstitial positions is about 2.7 eV. Extraction of a CO molecule requires an activation energy <3.1 eV but the CO molecule can diffuse with an activation energy <0.4 eV. Retrapping in oxygen vacancies is hindered—unlike for O2—by a barrier of about 2 eV

    Spatial and temporal dynamics at an actively silicifying hydrothermal system

    Get PDF
    Steep Cone Geyser is a unique geothermal feature in Yellowstone National Park (YNP), Wyoming, actively gushing silicon-rich fluids along outflow channels possessing living and actively silicifying microbial biomats. To assess the geomicrobial dynamics occurring temporally and spatially at Steep Cone, samples were collected at discrete locations along one of Steep Cone’s outflow channels for both microbial community composition and aqueous geochemistry analysis during field campaigns in 2010, 2018, 2019, and 2020. Geochemical analysis characterized Steep Cone as an oligotrophic, surface boiling, silicious, alkaline-chloride thermal feature with consistent dissolved inorganic carbon and total sulfur concentrations down the outflow channel ranging from 4.59 ± 0.11 to 4.26 ± 0.07 mM and 189.7 ± 7.2 to 204.7 ± 3.55 μM, respectively. Furthermore, geochemistry remained relatively stable temporally with consistently detectable analytes displaying a relative standard deviation &lt;32%. A thermal gradient decrease of ~55°C was observed from the sampled hydrothermal source to the end of the sampled outflow transect (90.34°C ± 3.38 to 35.06°C ± 7.24). The thermal gradient led to temperature-driven divergence and stratification of the microbial community along the outflow channel. The hyperthermophile Thermocrinis dominates the hydrothermal source biofilm community, and the thermophiles Meiothermus and Leptococcus dominate along the outflow before finally giving way to more diverse and even microbial communities at the end of the transect. Beyond the hydrothermal source, phototrophic taxa such as Leptococcus, Chloroflexus, and Chloracidobacterium act as primary producers for the system, supporting heterotrophic growth of taxa such as Raineya, Tepidimonas, and Meiothermus. Community dynamics illustrate large changes yearly driven by abundance shifts of the dominant taxa in the system. Results indicate Steep Cone possesses dynamic outflow microbial communities despite stable geochemistry. These findings improve our understanding of thermal geomicrobiological dynamics and inform how we can interpret the silicified rock record
    • …
    corecore