367 research outputs found

    Nitrogen deposition and grass encroachment in calcareous and acidic Grey dunes (H2130) in NW-Europe

    Get PDF
    We present an overview of high nitrogen deposition effects on coastal dune grasslands in NW-Europe (H2130), especially concerning grass encroachment in calcareous and acidic Grey Dunes. The problem is larger than previously assumed, because critical loads are still too high, and extra N-input from the sea may amount to 10 kg ha−1 yr−1. Grass encroachment clearly leads to loss of characteristic plant species, from approximately 16 in open dune grassland to 2 in tall-grass vegetation. Dune zones differ in grass encroachment, due to the chemical status of the soil. In calcareous and iron-rich dunes (Renodunal district), grass encroachment showed a clear gradient over the dune area. Grass encroachment is low in calcareous foredunes, due to low P-availability, and large grazers were not needed to counteract grass encroachment after 2001. In partly decalcified middle dunes, P-availability and grass encroachment are high due to dissolution of calcium phosphates, and grazing only partially helped to control this. In acidic, iron-rich hinterdunes, grass encroachment gradually increased between 1990 and 2014, possibly because P-availability increased with time due to increased soil organic matter content. In acidic, iron-poor dunes (Wadden district), grass encroachment is a large problem, because chemical P-fixation with Ca or Fe does not occur. Large grazers may however reduce tall-grass cover. High cumulative N-deposition could theoretically lead to increased N-storage and N-mineralization in the soil. Mineralization indeed increased with N-deposition, but in 15N experiments, most ammonium was converted to nitrate, and storage in soil organic matter was low. Soil N-storage is probably reduced by high nitrate leaching, which will favour dune restoration when N-deposition levels decrease

    Plant functional type affects composition and degradation of peat along a temperature gradient

    Get PDF
    Peatlands, storing significant amounts of carbon (C), are extremely vulnerable to climate change. Indirect effects of climate change are projected to lead to a growing dominance of vascular plants in moss dominated peatlands with unknown effects on peat decomposition. In this study we investigated the influence of different plant functional types (moss, graminoid, shrub) on peat composition and decomposition. Peat cores (20 cm depth) and plant material (Sphagnum sp., Calluna vulgaris, Eriophorum vaginatum) of two ombrotrophic moss dominated peatlands on a temperature gradient in the Italian Alps were analyzed. Peat cores were taken under shrub and graminoid coverage at the low temperature site (Low-T-Site) and the high temperature site (High-T-Site). We used carbon to nitrogen ratios, C-13 and N-15 and pyrolysis gas chromatography/mass spectrometry (py-GC/MS) to assess the influence of vascular plants on peat composition and degradation. In these moss dominated peatlands, methoxyphenols from lignin indicated highest contribution of vascular plant material at 2-5 cm under shrub coverage and 5-12 cm depth under graminoid coverage. Increasing C-13 ratios with depth could be related to increasing peat decomposition. This increase was higher for peat cores under graminoid coverage than under shrub coverage. Furthermore, the enrichment in C-13 with depth was higher at the High-T-Site than at the Low-T-Site. More detailed effects of plant functional type on peat degradation were established using species specific pyrolysis products as e.g. methoxyphenols from lignin (marker compounds for vascular plants) and 4-isopropenylphenol reflecting degradation of the sphagnum peat matrix. Comparing depth records of these molecular parameters indicated higher peat degradation in the presence of graminoids compared to shrubs and at the High-T-Site compared to the Low-T-Site confirming conclusions from C-13 data. Consequently, plant functional types are very likely to influence peat composition and degradation especially at elevated temperatures, while the projected vegetation shifts from graminoids to shrubs should counteract increasing peat degradation with increasing temperature. Therefore, vegetation shifts in response to climate change may play a crucial role in determining peat composition and degradation

    Performance-based social comparisons in humans and long-tailed macaques

    Get PDF
    Social comparisons are a fundamental feature of human thinking and affect self-evaluations and task performance. Little is known about the evolutionary origins of social comparison processes, however. Previous studies that investigated performance-based social comparisons in nonhuman primates yielded mixed results. We report three experiments that aimed (a) to explore how the task type may contribute to performance in monkeys, and (b) how a competitive set-up affects monkeys compared to humans. In a co-action touchscreen task, monkeys were neither influenced by nor interested in the performance of the partner. This may indicate that the experimental set-up was not sufficiently relevant to trigger social comparisons. In a novel co-action foraging task, monkeys increased their feeding speed in competitive and co-active conditions, but not in relation to the degree of competition. In an analogue of the foraging task, human participants were affected by partner performance and experimental context, indicating that the task is suitable to elicit social comparisons in humans. Our studies indicate that specifics of task and experimental setting are relevant to draw the monkeys’ attention to a co-actor and that, in line with previous research, a competitive element was crucial. We highlight the need to explore what constitutes “relevant” social comparison situations for monkeys as well as nonhuman animals in general, and point out factors that we think are crucial in this respect (e.g. task type, physical closeness, and the species’ ecology). We discuss that early forms of social comparisons evolved in purely competitive environments with increasing social tolerance and cooperative motivations allowing for more fine-grained processing of social information. Competition driven effects on task performance might constitute the foundation for the more elaborate social comparison processes found in humans, which may involve context-dependent information processing and metacognitive monitoring

    Lignin biomarkers as tracers of mercury sources in lakes water column

    Get PDF
    This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems
    corecore