33 research outputs found

    A Role for PPARβ/δ in Tumor Stroma and Tumorigenesis

    Get PDF
    Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a transcription factor that is activated by endogenous fatty acid ligands and by synthetic agonists. Its role in the regulation of skeletal muscle fatty acid catabolism, glucose homeostasis, and cellular differentiation has been established in multiple studies. On the contrary, a role for PPARβ/δ in tumorigenesis is less clear because there are contradictory reports in the literature. However, the majority of these studies have not examined the role of PPARβ/δ in the tumor stroma. Recent evidence suggests that stromal PPARβ/δ regulates tumor endothelial cell proliferation and promotes differentiation leading to the properly orchestrated events required for tumor blood vessel formation. This review briefly summarizes the significance of these studies that may provide clues to help explain the reported discrepancies in the literature regarding the role of PPARβ/δ in tumorigenesis

    Cyclooxygenase-2 expression is associated with the renal macula densa of patients with Bartter-like syndrome

    Get PDF
    Cyclooxygenase-2 expression is associated with the renal macula densa of patients with Bartter-like syndrome.BackgroundBartter-like syndrome (BLS) is a heterogeneous set of congenital tubular disorders that is associated with significant renal salt and water loss. The syndrome is also marked by increased urinary prostaglandin E2 (PGE2) excretion. In rodents, salt and volume depletion are associated with increased renal macula densa cyclooxygenase-2 (COX-2) expression. The expression of COX-2 in human macula densa has not been demonstrated. The present studies examined whether COX-2 can be detected in macula densa from children with salt-wasting BLS versus control tissues.MethodsThe intrarenal distribution of COX-2 protein and mRNA was analyzed by immunohistochemistry and in situ hybridization in 12 patients with clinically and/or genetically confirmed BLS. Renal tissue rejected for transplantation, from six adult patients not affected by BLS, was also examined.ResultsThe expression of COX-2 immunoreactive protein was observed in cells of the macula densa in 8 out 11 patients with BLS. In situ hybridization confirmed the expression of COX-2 mRNA in the macula densa in 6 out of 10 cases. COX-2 protein was also detected in the macula densa in a patient with congestive heart failure. The expression of COX-2 immunoreactive protein was not observed in cells associated with the macula densa in kidneys from patients without disorders associated with hyper-reninemia.ConclusionThese studies demonstrate that COX-2 may be detected in the macula densa of humans. Since macula densa COX-2 was detected in cases of BLS, renal COX-2 expression may be linked to volume and renin status in humans, as well as in animals

    Long-read sequencing identifies a common transposition haplotype predisposing for CLCNKB deletions

    Get PDF
    BACKGROUND: Long-read sequencing is increasingly used to uncover structural variants in the human genome, both functionally neutral and deleterious. Structural variants occur more frequently in regions with a high homology or repetitive segments, and one rearrangement may predispose to additional events. Bartter syndrome type 3 (BS 3) is a monogenic tubulopathy caused by deleterious variants in the chloride channel gene CLCNKB, a high proportion of these being large gene deletions. Multiplex ligation-dependent probe amplification, the current diagnostic gold standard for this type of mutation, will indicate a simple homozygous gene deletion in biallelic deletion carriers. However, since the phenotypic spectrum of BS 3 is broad even among biallelic deletion carriers, we undertook a more detailed analysis of precise breakpoint regions and genomic structure. METHODS: Structural variants in 32 BS 3 patients from 29 families and one BS4b patient with CLCNKB deletions were investigated using long-read and synthetic long-read sequencing, as well as targeted long-read sequencing approaches. RESULTS: We report a ~3 kb duplication of 3'-UTR CLCNKB material transposed to the corresponding locus of the neighbouring CLCNKA gene, also found on ~50 % of alleles in healthy control individuals. This previously unknown common haplotype is significantly enriched in our cohort of patients with CLCNKB deletions (45 of 51 alleles with haplotype information, 2.2 kb and 3.0 kb transposition taken together, p=9.16×10-9). Breakpoint coordinates for the CLCNKB deletion were identifiable in 28 patients, with three being compound heterozygous. In total, eight different alleles were found, one of them a complex rearrangement with three breakpoint regions. Two patients had different CLCNKA/CLCNKB hybrid genes encoding a predicted CLCNKA/CLCNKB hybrid protein with likely residual function. CONCLUSIONS: The presence of multiple different deletion alleles in our cohort suggests that large CLCNKB gene deletions originated from many independently recurring genomic events clustered in a few hot spots. The uncovered associated sequence transposition haplotype apparently predisposes to these additional events. The spectrum of CLCNKB deletion alleles is broader than expected and likely still incomplete, but represents an obvious candidate for future genotype/phenotype association studies. We suggest a sensitive and cost-efficient approach, consisting of indirect sequence capture and long-read sequencing, to analyse disease-relevant structural variant hotspots in general

    Atypical hemolytic uremic syndrome in children: complement mutations and clinical characteristics

    Get PDF
    Item does not contain fulltextBACKGROUND: Mutations in complement factor H (CFH), factor I (CFI), factor B (CFB), thrombomodulin (THBD), C3 and membrane cofactor protein (MCP), and autoantibodies against factor H (alphaFH) with or without a homozygous deletion in CFH-related protein 1 and 3 (CFHR1/3) predispose development of atypical hemolytic uremic syndrome (aHUS). METHODS: Different mutations in genes encoding complement proteins in 45 pediatric aHUS patients were retrospectively linked with clinical features, treatment, and outcome. RESULTS: In 47% of the study participants, potentially pathogenic genetic anomalies were found (5xCFH, 4xMCP, and 4xC3, 3xCFI, 2xCFB, 6xalphaFH, of which five had CFHR1/3); four patients carried combined genetic defects or a mutation, together with alphaFH. In the majority (87%), disease onset was preceeded by a triggering event; in 25% of cases diarrhea was the presenting symptom. More than 50% had normal serum C3 levels at presentation. Relapses were seen in half of the patients, and there was renal graft failure in all except one case following transplant. CONCLUSIONS: Performing adequate DNA analysis is essential for treatment and positive outcome in children with aHUS. The impact of intensive initial therapy and renal replacement therapy, as well as the high risk of recurrence of aHUS in renal transplant, warrants further understanding of the pathogenesis, which will lead to better treatment options.01 augustus 201

    Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects

    Get PDF
    Salt-losing tubulopathies with secondary hyperaldosteronism (SLT) comprise a set of well-defined inherited tubular disorders. Two segments along the distal nephron are primarily involved in the pathogenesis of SLTs: the thick ascending limb of Henle’s loop, and the distal convoluted tubule (DCT). The functions of these pre- and postmacula densa segments are quite distinct, and this has a major impact on the clinical presentation of loop and DCT disorders – the Bartter- and Gitelman-like syndromes. Defects in the water-impermeable thick ascending limb, with its greater salt reabsorption capacity, lead to major salt and water losses similar to the effect of loop diuretics. In contrast, defects in the DCT, with its minor capacity of salt reabsorption and its crucial role in fine-tuning of urinary calcium and magnesium excretion, provoke more chronic solute imbalances similar to the effects of chronic treatment with thiazides. The most severe disorder is a combination of a loop and DCT disorder similar to the enhanced diuretic effect of a co-medication of loop diuretics with thiazides. Besides salt and water supplementation, prostaglandin E2-synthase inhibition is the most effective therapeutic option in polyuric loop disorders (e.g., pure furosemide and mixed furosemide–amiloride type), especially in preterm infants with severe volume depletion. In DCT disorders (e.g., pure thiazide and mixed thiazide–furosemide type), renin–angiotensin–aldosterone system (RAAS) blockers might be indicated after salt, potassium, and magnesium supplementation are deemed insufficient. It appears that in most patients with SLT, a combination of solute supplementation with some drug treatment (e.g., indomethacin) is needed for a lifetime

    Novel Allelic Variants in the Canine Cyclooxgenase-2 (Cox-2) Promoter Are Associated with Renal Dysplasia in Dogs

    Get PDF
    Renal dysplasia (RD) in dogs is a complex disease with a highly variable phenotype and mode of inheritance that does not follow a simple Mendelian pattern. Cox-2 (Cyclooxgenase-2) deficient mice have renal abnormalities and a pathology that has striking similarities to RD in dogs suggesting to us that mutations in the Cox-2 gene could be the cause of RD in dogs. Our data supports this hypothesis. Sequencing of the canine Cox-2 gene was done from clinically affected and normal dogs. Although no changes were detected in the Cox-2 coding region, small insertions and deletions of GC boxes just upstream of the ATG translation start site were found. These sequences are putative SP1 transcription factor binding sites that may represent important cis-acting DNA regulatory elements that govern the expression of Cox-2. A pedigree study of a family of Lhasa apsos revealed an important statistical correlation of these mutant alleles with the disease. We examined an additional 22 clinical cases from various breeds. Regardless of the breed or severity of disease, all of these had one or two copies of the Cox-2 allelic variants. We suggest that the unusual inheritance pattern of RD is due to these alleles, either by changing the pattern of expression of Cox-2 or making Cox-2 levels susceptible to influences of other genes or environmental factors that play an unknown but important role in the development of RD in dogs

    Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency

    Get PDF
    BACKGROUND: Remethylation defects are rare inherited disorders in which impaired remethylation of homocysteine to methionine leads to accumulation of homocysteine and perturbation of numerous methylation reactions. OBJECTIVE: To summarise clinical and biochemical characteristics of these severe disorders and to provide guidelines on diagnosis and management. DATA SOURCES: Review, evaluation and discussion of the medical literature (Medline, Cochrane databases) by a panel of experts on these rare diseases following the GRADE approach. KEY RECOMMENDATIONS: We strongly recommend measuring plasma total homocysteine in any patient presenting with the combination of neurological and/or visual and/or haematological symptoms, subacute spinal cord degeneration, atypical haemolytic uraemic syndrome or unexplained vascular thrombosis. We strongly recommend to initiate treatment with parenteral hydroxocobalamin without delay in any suspected remethylation disorder; it significantly improves survival and incidence of severe complications. We strongly recommend betaine treatment in individuals with MTHFR deficiency; it improves the outcome and prevents disease when given early

    Renal thrombotic microangiopathy in patients with cblC defect: review of an under-recognized entity

    Get PDF
    Methylmalonic aciduria and homocystinuria, cobalamin C (cblC) type, is the most common genetic type of functional cobalamin (vitamin B-12) deficiency. This metabolic disease is characterized by marked heterogeneity of neurocognitive disease (microcephaly, seizures, developmental delay, ataxia, hypotonia) and variable extracentral nervous system involvement (failure to thrive, cardiovascular, renal, ocular) manifesting predominantly early in life, sometimes during gestation. To enhance awareness and understanding of renal disease associated with cblC defect, we studied biochemical, genetic, clinical, and histopathological data from 36 patients. Consistent clinical chemistry features of renal disease were intravascular hemolysis, hematuria, and proteinuria in all patients, with nephrotic-range proteinuria observed in three. Renal function ranged from normal to renal failure, with eight patients requiring (intermittent) dialysis. Two thirds were diagnosed with atypical (diarrhea-negative) hemolytic uremic syndrome (HUS). Renal histopathology analyses of biopsy samples from 16 patients revealed glomerular lesions typical of thrombotic microangiopathy (TMA). Treatment with hydroxycobalamin improved renal function in the majority, including three in whom dialysis could be withdrawn. Neurological sequelae were observed in 44 % and cardiopulmonary involvement in 39 % of patients, with half of the latter group demonstrating pulmonary hypertension. Mortality reached 100 % in untreated patients and 79 and 56 % in those with cardiopulmonary or neurological involvement, respectively. In all patients presenting with unclear intravascular hemolysis, hematuria, and proteinuria, cblC defect should be ruled out by determination of blood/plasma homocysteine levels and/or genetic testing, irrespective of actual renal function and neurological status, to ensure timely diagnosis and treatment
    corecore