28 research outputs found

    Microbial Succession in the Gut: Directional Trends of Taxonomic and Functional Change in a Birth Cohort of Spanish Infants

    Get PDF
    In spite of its major impact on life-long health, the process of microbial succession in the gut of infants remains poorly understood. Here, we analyze the patterns of taxonomic and functional change in the gut microbiota during the first year of life for a birth cohort of 13 infants. We detect that individual instances of gut colonization vary in the temporal dynamics of microbiota richness, diversity, and composition at both functional and taxonomic levels. Nevertheless, trends discernible in a majority of infants indicate that gut colonization occurs in two distinct phases of succession, separated by the introduction of solid foods to the diet. This change in resource availability causes a sharp decrease in the taxonomic richness of the microbiota due to the loss of rare taxa (p = 2.06e-9), although the number of core genera shared by all infants increases substantially. Moreover, although the gut microbial succession is not strictly deterministic, we detect an overarching directionality of change through time towards the taxonomic and functional composition of the maternal microbiota. Succession is however not complete by the one year mark, as significant differences remain between one-year-olds and their mothers in terms of taxonomic (p = 0.009) and functional (p = 0.004) microbiota composition, and in taxonomic richness (p = 2.76e-37) and diversity (p = 0.016). Our results also indicate that the taxonomic composition of the microbiota shapes its functional capacities. Therefore, the observed inter-individual variability in taxonomic composition during succession is not fully compensated by functional equivalence among bacterial genera and may have important physiological consequences. Finally, network analyses suggest that positive interactions among core genera during community assembly contribute to ensure their permanence within the gut, and highlight an expansion of complexity in the interactions network as the core of taxa shared by all infants grows following the introduction of solid foods. © 2014 VallÚs et al.This work has been supported by the Spanish MICINN (project SAF2009-13032-C02-02 and project CSD2009-00006 of the CONSOLIDER program). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer Reviewe

    Differential Effects of Antibiotic Therapy on the Structure and Function of Human Gut Microbiota

    Get PDF
    The human intestinal microbiota performs many essential functions for the host. Antimicrobial agents, such as antibiotics (AB), are also known to disturb microbial community equilibrium, thereby having an impact on human physiology. While an increasing number of studies investigate the effects of AB usage on changes in human gut microbiota biodiversity, its functional effects are still poorly understood. We performed a follow-up study to explore the effect of ABs with different modes of action on human gut microbiota composition and function. Four individuals were treated with different antibiotics and samples were taken before, during and after the AB course for all of them. Changes in the total and in the active (growing) microbiota as well as the functional changes were addressed by 16S rRNA gene and metagenomic 454-based pyrosequencing approaches. We have found that the class of antibiotic, particularly its antimicrobial effect and mode of action, played an important role in modulating the gut microbiota composition and function. Furthermore, analysis of the resistome suggested that oscillatory dynamics are not only due to antibiotic-target resistance, but also to fluctuations in the surviving bacterial community. Our results indicated that the effect of AB on the human gut microbiota relates to the interaction of several factors, principally the properties of the antimicrobial agent, and the structure, functions and resistance genes of the microbial community

    Enrichment of Food With Tannin Extracts Promotes Healthy Changes in the Human Gut Microbiota

    No full text
    Food and food bioactive components are major drivers of modulation of the human gut microbiota. Tannin extracts consist of a mix of bioactive compounds, which are already exploited in the food industry for their chemical and sensorial properties. The aim of our study was to explore the viability of associations between tannin wood extracts of different origin and food as gut microbiota modulators. 16S rRNA amplicon next-generation sequencing (NGS) was used to test the effects on the gut microbiota of tannin extracts from quebracho, chestnut, and tara associated with commercial food products with different composition in macronutrients. The different tannin-enriched and non-enriched foods were submitted to in vitro digestion and fermentation by the gut microbiota of healthy subjects. The profile of the short chain fatty acids (SCFAs) produced by the microbiota was also investigated. The presence of tannin extracts in food promoted an increase of the relative abundance of the genus Akkermansia, recognized as a marker of a healthy gut, and of various members of the Lachnospiraceae and Ruminococcaceae families, involved in SCFA production. The enrichment of foods with tannin extracts had a booster effect on the production of SCFAs, without altering the profile given by the foods alone. These preliminary results suggest a positive modulation of the gut microbiota with potential benefits for human health through the enrichment of foods with tannin extracts.This work was supported by the research project Stance4Health (contract no. 816303) from the European Commission (Research Executive Agency)Ye

    Effect of Mastiha supplementation on NAFLD: The MAST4HEALTH randomised, controlled trial

    No full text
    On behalf of MAST4HEALTH consortium: et al.[Scope]: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease with poor therapeutic strategies. Mastiha possesses antioxidant/anti-inflammatory and lipid-lowering properties. The authors investigate the effectiveness of Mastiha as a nonpharmacological intervention in NAFLD.[Methods and Results]: Ninety-eight patients with NAFLD in three countries (Greece, Italy, Serbia) are randomly allocated to either Mastiha or Placebo for 6 months, as part of a multicenter, randomized, double-blind, placebo-controlled, parallel-group clinical trial. The authors assess NAFLD severity via magnetic resonance imaging (MRI) scanning and LiverMultiScan technique and evaluate the effectiveness of Mastiha through medical, anthropometric, biochemical, metabolomic, and microbiota assessment. Mastiha is not superior to Placebo on changes in iron-corrected T1 (cT1) and Liver Inflammation Fibrosis score (LIF) in entire patient population; however, after BMI stratification (BMI ≀ 35 kg m-2 and BMI > 35 kg m-2), severely obese patients show an improvement in cT1 and LIF in Mastiha versus Placebo. Mastiha increases dissimilarity of gut microbiota, as shown by the Bray-Curtis index, downregulates Flavonifractor, a known inflammatory taxon and decreases Lysophosphatidylcholines-(LysoPC) 18:1, Lysophosphatidylethanolamines-(LysoPE) 18:1, and cholic acid compared to Placebo.[Conclusion]: Mastiha supplementation improves microbiota dysbiosis and lipid metabolite levels in patients with NAFLD, although it reduces parameters of liver inflammation/fibrosis only in severely obese patients.This project was funded by the European Union’s Horizon 2020 researchand innovation program MAST4HEALTH under the Marie SkƂodowska-Curie grant agreement no. 691042.Peer reviewe

    Microbial Succession in the Gut: Directional Trends of Taxonomic and Functional Change in a Birth Cohort of Spanish Infants

    No full text
    <div><p>In spite of its major impact on life-long health, the process of microbial succession in the gut of infants remains poorly understood. Here, we analyze the patterns of taxonomic and functional change in the gut microbiota during the first year of life for a birth cohort of 13 infants. We detect that individual instances of gut colonization vary in the temporal dynamics of microbiota richness, diversity, and composition at both functional and taxonomic levels. Nevertheless, trends discernible in a majority of infants indicate that gut colonization occurs in two distinct phases of succession, separated by the introduction of solid foods to the diet. This change in resource availability causes a sharp decrease in the taxonomic richness of the microbiota due to the loss of rare taxa (p = 2.06e-9), although the number of core genera shared by all infants increases substantially. Moreover, although the gut microbial succession is not strictly deterministic, we detect an overarching directionality of change through time towards the taxonomic and functional composition of the maternal microbiota. Succession is however not complete by the one year mark, as significant differences remain between one-year-olds and their mothers in terms of taxonomic (p = 0.009) and functional (p = 0.004) microbiota composition, and in taxonomic richness (p = 2.76e-37) and diversity (p = 0.016). Our results also indicate that the taxonomic composition of the microbiota shapes its functional capacities. Therefore, the observed inter-individual variability in taxonomic composition during succession is not fully compensated by functional equivalence among bacterial genera and may have important physiological consequences. Finally, network analyses suggest that positive interactions among core genera during community assembly contribute to ensure their permanence within the gut, and highlight an expansion of complexity in the interactions network as the core of taxa shared by all infants grows following the introduction of solid foods.</p></div

    ANOSIM comparison of timepoints.

    No full text
    <p>Overall analyses for taxonomic (A) and functional (B) Bray-Curtis distances among all samples. The length of the bows indicates the level of heterogeneity and the width the number of compared samples. Statistically significant differences among timepoints are detected for both taxonomic and functional data. Note the decrease in heterogeneity with time in infants and the larger heterogeneity in MA compared to MB samples. (C) Representation of pairwise ANOSIM analyses between timepoints. Each timepoint is represented by a color and is linked by lines of this color to all timepoints from which it is not significantly different. For functional composition, significant differences appear between timepoints that are more separated in time, indicating directionality along infant development, but no such pattern is detected at the taxonomic level.</p

    Timecore Venn diagrams.

    No full text
    <p>Changes in the core sets of genera (A) or functions (B) present at each infant timepoint. In both cases, areas representing the different timecores are enclosed by lines of the corresponding colors. The red central circles represent the genera or functions present in all five infant timecores; areas filled in dark orange, medium orange, light orange and yellow represent features present in four, three, two or one infant timecores. The number of features included in each section of the diagram is shown and areas are approximately proportional to these numbers.</p

    Different behaviors of taxonomic and functional richness and diversity through infant gut microbiota development.

    No full text
    <p>Hierarchical clustering of temporal profiles for (A) taxon richness (Chao1 estimator) and (B) taxon diversity (Shannon index), showing the extent of variation among the 13 infants. Values are centered at the mean of all samples and scaled by the standard deviation. Colored profile clusters have >95% support based on multiscale bootstrap resampling. The boxplots in (C) and (D) summarize the general behavior of taxon richness and diversity for all infants. Taxon richness (C) shows an increase in median values with time interrupted by the introduction of solid foods (I4), when a decrease in richness is observed. Taxon diversity (B) shows an increase in median values from I1 to I4 followed by a decrease between I4 and I5. Functional richness (E) and diversity (F) show no specific pattern but rather fluctuate with time.</p
    corecore