608 research outputs found
Electrochemical electron beam lithography: Write, read, and erase metallic nanocrystals on demand.
We develop a solution-based nanoscale patterning technique for site-specific deposition and dissolution of metallic nanocrystals. Nanocrystals are grown at desired locations by electron beam-induced reduction of metal ions in solution, with the ions supplied by dissolution of a nearby electrode via an applied potential. The nanocrystals can be "erased" by choice of beam conditions and regrown repeatably. We demonstrate these processes via in situ transmission electron microscopy using Au as the model material and extend to other metals. We anticipate that this approach can be used to deposit multicomponent alloys and core-shell nanostructures with nanoscale spatial and compositional resolutions for a variety of possible applications
Inferring Unusual Crowd Events From Mobile Phone Call Detail Records
The pervasiveness and availability of mobile phone data offer the opportunity
of discovering usable knowledge about crowd behaviors in urban environments.
Cities can leverage such knowledge in order to provide better services (e.g.,
public transport planning, optimized resource allocation) and safer cities.
Call Detail Record (CDR) data represents a practical data source to detect and
monitor unusual events considering the high level of mobile phone penetration,
compared with GPS equipped and open devices. In this paper, we provide a
methodology that is able to detect unusual events from CDR data that typically
has low accuracy in terms of space and time resolution. Moreover, we introduce
a concept of unusual event that involves a large amount of people who expose an
unusual mobility behavior. Our careful consideration of the issues that come
from coarse-grained CDR data ultimately leads to a completely general framework
that can detect unusual crowd events from CDR data effectively and efficiently.
Through extensive experiments on real-world CDR data for a large city in
Africa, we demonstrate that our method can detect unusual events with 16%
higher recall and over 10 times higher precision, compared to state-of-the-art
methods. We implement a visual analytics prototype system to help end users
analyze detected unusual crowd events to best suit different application
scenarios. To the best of our knowledge, this is the first work on the
detection of unusual events from CDR data with considerations of its temporal
and spatial sparseness and distinction between user unusual activities and
daily routines.Comment: 18 pages, 6 figure
Designing rigid carbon foams
We use ab initio density functional calculations to study the stability,
elastic properties and electronic structure of sp2 carbon minimal surfaces with
negative Gaussian curvature, called schwarzites. We focus on two systems with
cubic unit cells containing 152 and 200 carbon atoms, which are metallic and
very rigid. The porous schwarzite structure allows for efficient and reversible
doping by electron donors and acceptors, making it a promising candidate for
the next generation of alkali ion batteries. We identify schwarzite structures
that act as arrays of interconnected quantum spin dots or become magnetic when
doped. We introduce two interpenetrating schwarzite structures that may find
their use as the ultimate super-capacitor.Comment: 6 pages, 5 figure
Imaging of lung transplant complications
AbstractSince the late 1980s, lung transplantation has emerged as a valid treatment option for some patients with advanced non-neoplastic lung disease. Long-term survival of lung transplant recipients, however, is lower than that of patients with other types of transplantation, because of numerous specific postoperative complications. Thanks to X-ray and CT, radiologists can guide clinicians, helped in this diagnostic approach by the time between the date of injury and date of transplantation. We will detail in this pictorial review the immediate and late surgical complications, the immunological complications, the infectious complications and other late complications
Exploring Zeptosecond Quantum Equilibration Dynamics: From Deep-Inelastic to Fusion-Fission Outcomes in Ni+Ni Reactions
Energy dissipative processes play a key role in how quantum many-body systems
dynamically evolve towards equilibrium. In closed quantum systems, such
processes are attributed to the transfer of energy from collective motion to
single-particle degrees of freedom; however, the quantum many-body dynamics of
this evolutionary process are poorly understood. To explore energy dissipative
phenomena and equilibration dynamics in one such system, an experimental
investigation of deep-inelastic and fusion-fission outcomes in the
Ni+Ni reaction has been carried out. Experimental outcomes have
been compared to theoretical predictions using Time Dependent Hartree Fock and
Time Dependent Random Phase Approximation approaches, which respectively
incorporate one-body energy dissipation and fluctuations. Excellent
quantitative agreement has been found between experiment and calculations,
indicating that microscopic models incorporating one-body dissipation and
fluctuations provide a potential tool for exploring dissipation in low-energy
heavy ion collisions.Comment: 11 pages, 9 figures, 1 table, including Supplemental Material -
Version accepted for publication in Physical Review Letter
Від редакційної колегії
No abstract
Reduced quasifission competition in fusion reactions forming neutron-rich heavy elements
Measurements of mass-angle distributions (MADs) for Cr + W reactions,
providing a wide range in the neutron-to-proton ratio of the compound system,
(N/Z)CN, have allowed for the dependence of quasifission on the (N/Z)CN to be
determined in a model-independent way. Previous experimental and theoretical
studies had produced conflicting conclusions. The experimental MADs reveal an
increase in contact time and mass evolution of the quasifission fragments with
increasing (N/Z)CN, which is indicative of an increase in the fusion
probability. The experimental results are in agreement with microscopic
time-dependent Hartree-Fock calculations of the quasifission process. The
experimental and theoretical results favor the use of the most neutron-rich
projectiles and targets for the production of heavy and superheavy nuclei.Comment: Accepted to PRC as a Rapid Communicatio
Formation of ultracold RbCs molecules by photoassociation
The formation of ultracold metastable RbCs molecules is observed in a double
species magneto-optical trap through photoassociation below the
^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous
emission. The molecules are detected by resonance enhanced two-photon
ionization. Using accurate quantum chemistry calculations of the potential
energy curves and transition dipole moment, we interpret the observed
photoassociation process as occurring at short internuclear distance, in
contrast with most previous cold atom photoassociation studies. The vibrational
levels excited by photoassociation belong to the 5th 0^+ or the 4th 0^-
electronic states correlated to the Rb(5P_1/2,3/2)+Cs(6S_1/2) dissociation
limit. The computed vibrational distribution of the produced molecules shows
that they are stabilized in deeply bound vibrational states of the lowest
triplet state. We also predict that a noticeable fraction of molecules is
produced in the lowest level of the electronic ground state
Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei
Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely
inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission
competition. In “cold” fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies
significantly below the average capture barrier. In “hot” fusion with statically deformed actinide nuclei, this is not
the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion
(formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission.
Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed
actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics
at beam energies spanning the average capture barrier energy.
Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer
have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles
from C to S, bombarding Th and U target nuclei.
Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of
the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition
being centered around projectile atomic number ZP = 14. For mass-symmetric fission events, deviations of
angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest
a similar transition, but centered around ZP ∼ 8.
Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct
quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge.
The probability of fusion can be severely suppressed by these two quasifission processes, since the sub-barrier
heavy element yield is likely to be determined by the product of the probabilities of surviving each quasifission
process.The authors acknowledge support from ARC Grants
No. FL110100098, No. DP130101569, No. FT120100760, No.
DE140100784, No. DP140101337, No. DP160101254, and
No. DP170102318, and support by the Federal Government
NCRIS program for operations of the ANU Heavy Ion Accelerator
Facility
- …