722 research outputs found

    FermiFermi GBM Observations of V404 Cyg During its 2015 Outburst

    Get PDF
    V404 Cygni was discovered in 1989 by the GingaGinga X-ray satellite during its only previously observed X-ray outburst and soon after confirmed as a black hole binary. On June 15, 2015, the Gamma Ray Burst Monitor (GBM) triggered on a new outburst of V404 Cygni. We present 13 days of GBM observations of this outburst including Earth occultation flux measurements, spectral and temporal analysis. The Earth occultation fluxes reached 30 Crab with detected emission to 100 keV and determined, via hardness ratios, that the source was in a hard state. At high luminosity, spectral analysis between 8 and 300 keV showed that the electron temperature decreased with increasing luminosity. This is expected if the protons and electrons are in thermal equilibrium during an outburst with the electrons cooled by the Compton scattering of softer seed photons from the disk. However, the implied seed photon temperatures are unusually high, suggesting a contribution from another source, such as the jet. No evidence of state transitions is seen during this time period. The temporal analysis reveals power spectra that can be modeled with two or three strong, broad Lorentzians, similar to the power spectra of black hole binaries in their hard state

    Effect of cell separation on gene expression and DNA methylation profiles in intestinal epithelial cells

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Earth Occultation Imaging of the Low Energy Gamma-Ray Sky with GBM

    Full text link
    The Earth Occultation Technique (EOT) has been applied to Fermi's Gamma-ray Burst Monitor (GBM) to perform all-sky monitoring for a predetermined catalog of hard X-ray/soft gamma-ray sources. In order to search for sources not in the catalog, thus completing the catalog and reducing a source of systematic error in EOT, an imaging method has been developed -- Imaging with a Differential filter using the Earth Occultation Method (IDEOM). IDEOM is a tomographic imaging method that takes advantage of the orbital precession of the Fermi satellite. Using IDEOM, all-sky reconstructions have been generated for ~sim 4 years of GBM data in the 12-50 keV, 50-100 keV and 100-300 keV energy bands in search of sources otherwise unmodeled by the GBM occultation analysis. IDEOM analysis resulted in the detection of 57 sources in the 12-50 keV energy band, 23 sources in the 50-100 keV energy band, and 7 sources in the 100-300 keV energy band. Seventeen sources were not present in the original GBM-EOT catalog and have now been added. We also present the first joined averaged spectra for four persistent sources detected by GBM using EOT and by the Large Area Telescope (LAT) on Fermi: NGC 1275, 3C 273, Cen A, and the Crab

    The influence of the chameleon field potential on transition frequencies of gravitationally bound quantum states of ultra-cold neutrons

    Full text link
    We calculate the chameleon field potential for ultracold neutrons, bouncing on top of one or between two neutron mirrors in the gravitational field of the Earth. For the resulting non--linear equations of motion we give approximate analytical solutions and compare them with exact numerical ones for which we propose the analytical fit. The obtained solutions may be used for the quantitative analysis of contributions of a chameleon field to the transition frequencies of quantum states of ultra-cold neutrons bound in the gravitational field of the Earth.Comment: 11 pages, 4 figure

    Neutron lifetime measurements with the big gravitational trap for ultracold neutrons

    Full text link
    Neutron lifetime is one of the most important physical constants which determines parameters of the weak interaction and predictions of primordial nucleosynthesis theory. There remains the unsolved problem of a 3.9{\sigma} discrepancy between measurements of this lifetime using neutrons in beams and those with stored neutrons (UCN). In our experiment we measure the lifetime of neutrons trapped by Earth's gravity in an open-topped vessel. Two configurations of the trap geometry are used to change the mean frequency of UCN collisions with the surfaces - this is achieved by plunging an additional surface into the trap without breaking the vacuum. The trap walls are coated with a hydrogen-less fluorine-containing polymer to reduce losses of UCN. The stability of this coating to multiple thermal cycles between 80 K and 300 K was tested. At 80 K, the probability of UCN loss due to collisions with the trap walls is just 1.5% of the probability of beta-decay. The free neutron lifetime is determined by extrapolation to an infinitely large trap with zero collision frequency. The result of these measurements is 881.5 +/- 0.7_stat +/- 0.6_syst s which is consistent with the conventional value of 880.2 +/- 1.0 s presented by the Particle Data Group. Future prospects for this experiment are in further cooling to 10 K which will lead to an improved accuracy of measurement. In conclusion we present an analysis of currently-available data on various measurements of the neutron lifetime.Comment: 14 pages, 22 figure
    corecore