10 research outputs found

    Evaluation of the GEM-AQ model in the context of the AQMEII Phase 1 project

    No full text
    In the scope of the AQMEII Phase 1 project the GEM-AQ model was run over Europe for the year 2006. The modelling domain was defined using a global variable resolution grid with a rotated equator and uniform resolution of 0.2° &times; 0.2° over the European continent. Spatial distribution and temporal variability of the GEM-AQ model results were analysed for surface ozone and PM<sub>10</sub> concentrations. Model results were compared with measurements available in the ENSEMBLE database. Statistical measures were used to evaluate performance of the GEM-AQ model. The mean bias error, the mean absolute gross error and the Pearson correlation coefficient were calculated for the maximum 8 h running average ozone concentrations and daily mean PM<sub>10</sub> concentrations. The GEM-AQ model performance was characterized for station types, European climatic regions and seasons. The best performance for ozone was obtained at suburban stations, and the worst performance was obtained for rural stations where the model tends to underestimate. The best results for PM<sub>10</sub> were calculated for urban stations, while over most of Europe concentrations at rural sites were too high. Discrepancies between modelled and observed concentrations were discussed in the context of emission data uncertainty as well as the impact of large-scale dynamics and circulation of air masses. Presented analyses suggest that interpretation of modelling results is enhanced when regional climate characteristics are taken into consideration

    2014 iAREA campaign on aerosol in Spitsbergen Part 1: Study of physical and chemical properties

    Get PDF
    This paper presents the results of measurements of aerosol physical and chemical properties during iAREA2014 campaign that took place on Svalbard between 15th of Mar and 4th of May 2014. With respect to field area, the experiment consisted of two sites: NyeÅlesund (78�550N, 11�560E) and Longyearbyen (78�130N, 15�330E) with further integration of Aerosol Robotic Network (AERONET) station in Hornsund (77�000N, 15�330E). The subject of this study is to investigate the inesitu, passive and active remote sensing observations as well as numerical simulations to describe the temporal variability of aerosol singleescattering properties during spring season on Spitsbergen. The retrieval of the data indicates several event days with enhanced singleescattering properties due to the existence of sulphate and additional seaesalt load in the atmosphere which is possibly caused by relatively high wind speed. Optical results were confirmed by numerical simulations made by the GEMeAQ model and by chemical observations that indicated up to 45% contribution of the seaesalt to a PM10 total aerosol mass concentration. An agreement between the in-situ optical and microphysical properties was found, namely: the positive correlation between aerosol scattering coefficient measured by the nephelometer and effective radius obtained from laser aerosol spectrometer as well as negative correlation between aerosol scattering coefficient and the Ångstrom exponent indicated that slightly larger particles dominated during special events. The inesitu surface observations do not show any significant enhancement of the absorption coefficient as well as the black carbon concentration which might occur during spring. All of extensive singleescattering properties indicate a diurnal cycle in Longyearbyen, where 21:00e5:00 data stays at the background level, however increasing during the day by the factor of 3e4. It is considered to be highly connected with local emissions originating in combustion, traffic and harbour activities. On the other hand, no daily fluctuations in NyeÅlesund are observed. Mean values in NyeÅlesund are equal to 8.2, 0.8 Mm�1 and 103 ng/m3 for scattering, absorption coefficients and black carbon concentration; however in Longyearbyen (only data from 21:00e05:00 UTC) they reach 7.9, 0.6 Mm�1 as well as 83 ng/ m3 respectively. Overall, the spring 2014 was considerably clean and seaesalt was the major aerosol componen

    Predictive and reactive changes in antioxidant defence system in a heterothermic rodent

    No full text
    corecore