741 research outputs found

    Spontaneous spinal epidural haematoma during Factor Xa inhibitor treatment (Rivaroxaban)

    Get PDF
    We report on a 61-year-old female patient who developed a spontaneous spinal epidural haematoma (SSEH) after being treated by rivaroxaban, a new agent for the prevention of venous thromboembolic events in orthopaedic surgery. Although the pathogenesis of SSEH is unclear, anticoagulant therapy is a known risk factor. The patient sustained a sudden onset of severe back pain in the thoracic spine, followed by paraplegia below T8, 2days after proximal tibial osteotomy and rivaroxaban therapy. Magnetic resonance imaging (MRI) of the whole spine demonstrated a ventral SSEH from C2 to T8. Whilst preparing for the emergency evacuation of the SSEH, the neurological symptoms recovered spontaneously 4h after onset without surgery. After monitored bed rest for 48h the MRI was repeated and the SSEH was no longer present. This rare condition of spinal cord compression and unusually rapid spontaneous recovery has not previously been reported following rivaroxaban therap

    Observation of Ising-like critical fluctuations in frustrated Josephson junction arrays with modulated coupling energies

    Full text link
    We report the results of ac sheet conductance measurements performed on fully frustrated square arrays of Josephson junctions whose coupling energy is periodically modulated in one of the principal lattice directions. Such systems are predicted to exhibit two distinct transitions: a low-temperature Ising-like transition triggered by the proliferation of domain walls and a high-temperature transition driven by the vortex unbinding mechanism of the Beresinskii-Kosterlitz-Thouless (BKT) theory. Both the superfluid and dissipative components of the conductance are found to exhibit features which unambiguously demonstrate the existence of a double transition whose properties are consistent with the Ising-BKT scenario.Comment: To be published in Physica C (Proceedings of the 2nd European Conference in School Format 'Vortex Matter in Superconductors'

    Proton Losses Upstream of IP8 in LHC

    Get PDF
    In this report we analyse possible distant sources of proton losses in the long straight section around IP8. These sources can be collisions of the beam protons with nuclei of residual gas in the arcs, betatron cleaning inefficiency and proton-proton collisions in IR1

    Strategy for allocating the MSD magnets and vacuum chambers

    Get PDF
    An analogous strategy as applied for the MSI septum magnets allows an optimisation of the installation of the MSD septa regarding magnet and chamber allocation. Even if the gain in aperture is small, of the order of half a millimetre, it is not negligible and- being essentially for free - should nevertheless be implemented

    Optimization of Collimator Jaw Locations for the LHC

    Get PDF
    A highly effective collimation scheme is required in the LHC to limit heating of the vacuum chamber and superconducting magnets by protons either uncaptured at injection or scattered from the collision points. The proposed system would consist of one set of primary collimators followed by three sets of secondary collimators downstream to clean up protons scattered from the primaries. Each set of collimators would consist of four pairs of jaws - horizontal, vertical, and 45 o and 135 o skew. A study is reported of the optimization of the longitudinal positions of these jaws with the aim of minimizing the maximum betatron amplitudes of protons surviving the collimation system. This is performed using an analytical representation of the action of the jaws and is confirmed by tracking. Significant improvement can be obtained by omitting inactive jaws and adding skew jaws

    Numerical Optimization of Collimator Jaw Orientations and Locations in the LHC

    Get PDF
    The collimation system of LHC will consist of flat collimator jaws distributed along the IR7 lattice with the aim of limiting the maximum combined amplitudes of secondary halo particles (born along the edges of the primary collimators). The code DJ (Distribution of Jaws) computes this amplitude using a quasi-analytic algorithm (no tracking), by which the maximum initial angles are found, corresponding to trajectories escaping all secondary jaws. We report the latest version of DJ, which contains the following enhancements: (1) the orientation of each pair of jaws is a free variable (instead of using only vertical, horizontal, or 45 degrees skew jaws); (2) the minimizing method used is "simulated annealing", which, for our case of a discontinuous function of up to 32 variables, always finds a global minimum. Different initial jaw distributions lead to different final ones, but they all give essentially the same maximum halo amplitude; this seems to depend only on the number of jaws and the lattice parameters, particularly the tune-split. We discuss lattice characteristics found favorable for collimation

    Initial error analysis for the LHC collimation insertion

    Get PDF
    The two cleaning insertions in the LHC, for betatron and momentum collimation, are optimized for an ideal lattice and collimator jaw setup. We have studied a collimation beam line with randomly generated jaw misalignments and quadrupole field and alignment errors, the resultant distortion of the reference orbit being corrected with the help of monitors placed near critical collimators. Different closed orbit errors and beam shapes are considered at the entrance. We report the level of errors for which no corrections are needed and the level for which corrections are not possible

    Compendium for precise ac measurements of the quantum Hall resistance

    Full text link
    In view of the progress achieved in the field of the ac quantum Hall effect, the Working Group of the Comite Consultatif d'Electricite et Magnetisme (CCEM) on the AC Quantum Hall Effect asked the authors of this paper to write a compendium which integrates their experiences with ac measurements of the quantum Hall resistance. In addition to the important early work performed at the Bureau International des Poids et Mesures and the National Physical Laboratory, UK, further experience has been gained during a collaboration of the authors' institutes NRC, METAS, and PTB, and excellent agreement between the results of different national metrology institutes has been achieved. This compendium summarizes the present state of the authors' knowledge and reviews the experiences, tests and precautions that the authors have employed to achieve accurate measurements of the ac quantum Hall effect. This work shows how the ac quantum Hall effect can be reliably used as a quantum standard of ac resistance having a relative uncertainty of a few parts in 10^8.Comment: 26 pages, 8 figure

    AuCl3-Catalyzed Hemiacetal Activation for the Stereoselective Synthesis of 2-Deoxy Trehalose Derivatives

    Get PDF
    [Image: see text] A new practical, catalytic, and highly stereoselective method for directly accessing 1,1-α,α′-linked 2-deoxy trehalose analogues via AuCl(3)-catalyzed dehydrative glycosylation using hemiacetal glycosyl donors and acceptors is described. The method relies on the chemoselective Brønsted acid-type activation of tribenzylated 2-deoxy hemiacetals in the presence of other less reactive hemiacetals

    Biological impact assessment of nanomaterial used in nanomedicine. introduction to the NanoTEST project.

    Get PDF
    Therapeutic nanoparticles (NPs) are used in nanomedicine as drug carriers or imaging agents, providing increased selectivity/specificity for diseased tissues. The first NPs in nanomedicine were developed for increasing the efficacy of known drugs displaying dose-limiting toxicity and poor bioavailability and for enhancing disease detection. Nanotechnologies have gained much interest owing to their huge potential for applications in industry and medicine. It is necessary to ensure and control the biocompatibility of the components of therapeutic NPs to guarantee that intrinsic toxicity does not overtake the benefits. In addition to monitoring their toxicity in vitro, in vivo and in silico, it is also necessary to understand their distribution in the human body, their biodegradation and excretion routes and dispersion in the environment. Therefore, a deep understanding of their interactions with living tissues and of their possible effects in the human (and animal) body is required for the safe use of nanoparticulate formulations. Obtaining this information was the main aim of the NanoTEST project, and the goals of the reports collected together in this special issue are to summarise the observations and results obtained by the participating research teams and to provide methodological tools for evaluating the biological impact of NPs
    corecore