14 research outputs found

    Association of acute Babesia canis infection and serum lipid, lipoprotein, and apoprotein concentrations in dogs

    Get PDF
    Background Babesia canis infection induces a marked acute phase response (APR) that might be associated with alteration in lipid and lipoprotein metabolism and disease prognosis. Hypothesis Dogs with B. canis-induced APR develop dyslipidemia with altered lipoprotein concentration and morphology. Animals Twenty-nine client-owned dogs with acute B. canis infection and 10 clinically healthy control dogs. Methods Observational cross-sectional study. Serum amyloid A (SAA) was measured using ELISA. Cholesterol, phospholipids, and triglycerides were determined biochemically. Lipoproteins were separated using agarose gel electrophoresis. Lipoprotein diameter was assessed by polyacrylamide gradient gel electrophoresis; correlation with ApoA-1 (radioimmunoassay) and SAA was determined. Results Dogs with B. canis infection had a marked APR (median SAA, 168.3 mu g/mL; range, 98.1-716.2 mu g/mL) compared with controls (3.2 mu g/mL, 2.0-4.2 mu g/mL) (P < .001). Dogs with B. canis infection had significantly lower median cholesterol (4.79 mmol/L, 1.89-7.64 mmol/L versus 6.15 mmol/L, 4.2-7.4 mmol/L) (P = .02), phospholipid (4.64 mmol/L, 2.6-6.6 mmol/L versus 5.72 mmol/L, 4.68-7.0 mmol/L) (P = .02), and alpha-lipoproteins (77.5%, 27.7%-93.5% versus 89.2%, 75.1%-93.5%) (P = .04), and higher ApoA-1 (1.36 U, 0.8-2.56 U versus 0.95 U, 0.73-1.54 U) concentrations (P = .02). Serum amyloid A correlated with high-density lipoproteins (HDLs) diameter (rho = .43; P = .03) and ApoA-1 (rho = .63, P < .001). Conclusions and Clinical Importance Major changes associated with B. canis-induced APR in dogs are related to concentration, composition, and morphology of HDL particles pointing to an altered reverse cholesterol transport. Parallel ApoA-1 and SAA concentration increase is a unique still unexplained pathophysiological finding

    The effect of extremely low-frequency magnetic field on motor activity of rats in the open field

    No full text
    Exposure to extremely low-frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) for seven days did not change spontaneous motor activity of rats in the open field compared to sham-exposed animals. Pre-exposure to ELF-MF decreased locomotor and stereotypic activity induced by amphetamine (1.5 mg/kg body weight) and accordingly increased the resting time compared to sham-exposed and amphetamine-treated rats. Vertical activity (rearing) of these two groups was similar. Our results indicate that ELF-MF has different effects on some parameters of amphetamine-induced motor activity, probably due to brain region-specific effects on catecholaminergic systems responsible for movement control.nul

    Involvement of Na+/K(+)pump in fine modulation of bursting activity of the snail Br neuron by 10 mT static magnetic field

    No full text
    The spontaneously active Br neuron from the brain-subesophageal ganglion complex of the garden snail Helix pomatia rhythmically generates regular bursts of action potentials with quiescent intervals accompanied by slow oscillations of membrane potential. We examined the involvement of the Na+/K+ pump in modulating its bursting activity by applying a static magnetic field. Whole snail brains and Br neuron were exposed to the 10-mT static magnetic field for 15 min. Biochemical data showed that Na+/K+-ATPase activity increased almost twofold after exposure of snail brains to the static magnetic field. Similarly, P-31 NMR data revealed a trend of increasing ATP consumption and increase in intracellular pH mediated by the Na+/H+ exchanger in snail brains exposed to the static magnetic field. Importantly, current clamp recordings from the Br neuron confirmed the increase in activity of the Na+/K+ pump after exposure to the static magnetic field, as the magnitude of ouabain's effect measured on the membrane resting potential, action potential, and interspike interval duration was higher in neurons exposed to the magnetic field. Metabolic pathways through which the magnetic field influenced the Na+/K+ pump could involve phosphorylation and dephosphorylation, as blocking these processes abolished the effect of the static magnetic field

    Pharmacological evaluation of selected arylpiperazines with atypical antipsychotic potential

    No full text
    Six active compounds, among previously synthesized and screened arylpiperazines, were selected and evaluated for the binding affinity to rat dopamine, serotonin and alpha(1) receptors. Two compounds with benztriazole group had a 5-HT2A/D-2 binding ratio characteristic for atypical neuroleptics ( gt 1, pK(i) values). Compound 2, 5-{2-[4-(2,3-dimethyl-phenyl)-piperazin-1-yl]ethyl}1H-benzotriazole, expressed clozapine-like in vitro binding profile at D-2, 5-HT2A and alpha1 receptors and a higher affinity for 5-HT1A receptors than clozapine. Also, it exhibited the noncataleptic behavioural pattern of atypical antipsychotics and antagonized d-amphetamine-induced hyperlocomotion in rats. (C) 2004 Elsevier Ltd. All rights reserved

    Ecophysiological responses of Fagus sylvatica L. seedlings to changing light conditions. II. The interaction of clearing, gap and understory environments with soil fertility.

    No full text
    The survival and growth of natural beech regeneration after canopy removal is variable and little is known about ecophysiological mechanisms of these responses. Biomass, nonstructural carbohydrate levels and nitrogen concentrations were measured in an Italian population of European beech seedlings. Seedlings were container-grown in two types of soil, organic and mineral, collected at the study site. The seedlings were grown under three light treatments: under full beech canopy (understory), exposed to full sun only during midday (gap) and under full sun (clearing). Leaf gas exchange and chlorophyll a fluorescence parameters were measured and then foliar analyses were conducted for chlorophyll, phenolic and tannin levels. Biomass and allocation were significantly affected by light and soil treatments. The clearing seedlings and those in organic soil were larger than seedlings in the other light treatments or soil type. Total nonstructural carbohydrate concentrations were lower in the understory seedlings and significant differences between soil types were present in the gap and clearing seedlings. Nitrogen concentrations were higher in the understory seedlings and those growing in the organic soil compared to the other treatments. Gas exchange rates were highest in clearing and the organic soil seedlings. Gap seedlings exhibited photosynthetic acclimation that allowed them to utilize high light of midday and any sunflecks during the morning and afternoon. Relative fluorescence was significantly influenced by both light treatment and soil type, with the highest values observed in the gap seedlings. Light response curves showed decreasing apparent maximum quantum efficiency from the understory to clearing, while maximum photosynthetic rate was highest in the gap seedlings. Chlorophyll concentration was highest in understory seedlings and those growing in organic soil and higher in seedlings growing in organic than in mineral soil. Both foliar tannin and phenolic levels were highest in clearing seedlings, and only tannin concentrations were affected by soil type. Understory seedlings had the highest mortality and insect herbivory; the latter was found to be inversely related to tannin concentration. Overall, growth and photosynthesis in beech seedlings responded positively to high light associated with small canopy gaps. Organic soil increased seedling size, particularly in the gap and clearing environments. We conclude that forest gaps are favorable for photosynthesis and growth of European beech seedlings
    corecore