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Abstract

Background: Babesia canis infection induces a marked acute phase response (APR)

that might be associated with alteration in lipid and lipoprotein metabolism and dis-

ease prognosis.

Hypothesis: Dogs with B. canis-induced APR develop dyslipidemia with altered lipo-

protein concentration and morphology.

Animals: Twenty-nine client-owned dogs with acute B. canis infection and 10 clini-

cally healthy control dogs.

Methods: Observational cross-sectional study. Serum amyloid A (SAA) was measured

using ELISA. Cholesterol, phospholipids, and triglycerides were determined biochemi-

cally. Lipoproteins were separated using agarose gel electrophoresis. Lipoprotein

diameter was assessed by polyacrylamide gradient gel electrophoresis; correlation

with ApoA-1 (radioimmunoassay) and SAA was determined.

Results: Dogs with B. canis infection had a marked APR (median SAA, 168.3 μg/mL;

range, 98.1-716.2 μg/mL) compared with controls (3.2 μg/mL, 2.0-4.2 μg/mL) (P < .001).

Dogs with B. canis infection had significantly lower median cholesterol (4.79 mmol/L,

1.89-7.64 mmol/L versus 6.15 mmol/L, 4.2-7.4 mmol/L) (P = .02), phospholipid

(4.64 mmol/L, 2.6-6.6 mmol/L versus 5.72 mmol/L, 4.68-7.0 mmol/L) (P = .02), and

α-lipoproteins (77.5%, 27.7%-93.5% versus 89.2%, 75.1%-93.5%) (P = .04), and higher
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ApoA-1 (1.36 U, 0.8-2.56 U versus 0.95 U, 0.73-1.54 U) concentrations (P = .02).

Serum amyloid A correlated with high-density lipoproteins (HDLs) diameter (rho = .43;

P = .03) and ApoA-1 (rho = .63, P < .001).

Conclusions and Clinical Importance: Major changes associated with B. canis-induced

APR in dogs are related to concentration, composition, and morphology of HDL parti-

cles pointing to an altered reverse cholesterol transport. Parallel ApoA-1 and SAA

concentration increase is a unique still unexplained pathophysiological finding.

K E YWORD S

acute phase response, apolipoprotein A-1, high-density lipoprotein, lipoprotein diameter, serum

amyloid A

1 | INTRODUCTION

The acute phase response (APR) is induced by tissue injury and

governed by a network of neuro-immuno-humoral signals that enable

rapid adaptation, elimination of harmful agents, and repair of damaged

tissue. One of the best described markers of an APR is an increase in

serum concentrations of acute phase proteins, such as serum amyloid

A (SAA). Acute phase responses also induce alterations in lipid metab-

olism that can lead to important changes in plasma lipids (cholesterol,

phospholipids, and triglycerides) and in the concentration, morphology

(diameter), and composition of lipoproteins.1 Some changes, such as a

decrease in high-density lipoprotein (HDL)-cholesterol, are related to

poor prognosis and death in septic humans and rodents.2

In humans and rodents, the APR is characterized not only by a

decrease in HDL, but also by a decrease in serum apolipoprotein (Apo)

A-1, the main apoprotein of HDL, suggesting altered reverse choles-

terol transport.3 Reverse cholesterol transport is a multistep process

leading to cholesterol transfer from peripheral tissues to the liver,

where uptake is mediated by the scavenger receptor, class B type

1 (SR-B1).1 ApoA-1 is indispensable for cholesterol efflux and esterifi-

cation, and for the remodeling of HDL particles.4 Furthermore, in acute

inflammation, HDL becomes enriched with SAA, resulting in further

modification of its morphology and diameter.5,6 The overall conse-

quence of an APR is decreased cholesterol efflux, altered HDL mor-

phology, and decreased cholesterol uptake through SR-BI in the liver.1

The influence of the APR on lipids and lipoproteins in dogs is

poorly understood. In dogs, the majority of serum cholesterol is con-

tained within HDL and involved in reverse cholesterol transport.7

Canine HDL particles form distinct α1 and α2 bands in electrophoretic

gels that correspond quantitatively to HDL-2 and HDL-1.8,9 Dogs lack

cholesterol ester transfer protein (CETP) activity, which in humans is

involved in transferring cholesteryl esters from HDL to low-density

lipoproteins (LDLs).10 These species differences might affect changes

in lipids and lipoproteins in dogs with inflammatory disease.

Babesia canis causes an important tick-borne disease that induces a

typical APR in dogs, with a major increase in SAA.11 Total cholesterol and

HDL-cholesterol levels are lower at the time of presentation than after

treatment with imidocarb-dipropionate,12 and ApoA-1 concentration is

higher in dogs with acute babesiosis.13 However, in those studies, the

method used for HDL cholesterol was not recommended for use with

canine serum,14 and the ApoA-1 results, obtained via mass spectrometry,

were unusual and unexplained. Furthermore, changes in lipids and lipo-

proteins have not yet been investigated in conjunction with SAA levels in

dogs with babesiosis, nor have changes in lipoprotein electrophoretic

patterns or lipoprotein morphology been examined.

We hypothesized that dogs with B. canis-induced APR develop

dyslipidemia with altered lipoprotein concentration and morphology,

compared with healthy dogs. Our aims were to (1) measure serum

lipids, SAA and ApoA-1 concentrations concurrently in dogs with

acute B. canis infection and to compare the results with those in clini-

cally healthy controls; (2) evaluate differences in lipoprotein types via

electrophoresis; and (3) evaluate lipoprotein diameter and its correla-

tion with SAA and ApoA-1 concentrations.

2 | MATERIALS AND METHODS

2.1 | Animals and samples

This observational cross-sectional study was conducted on dogs with

a confirmed diagnosis of B. canis infection presented in March and

April 2015 (the primary season for tick-borne disease) to a private vet-

erinary practice in a suburban Belgrade (Serbia) municipality that is

endemic for B. canis. Criteria for inclusion were: (1) acute onset of clin-

ical signs consistent with Babesia sp. infection (24-48 hours of anorexia,

fever, lethargy, pale or icteric mucous membranes and thrombocytope-

nia, leukopenia, and moderate anemia); (2) large Babesia organisms

observed in thin blood smears stained with a Romanowsky stain (BioDiff,

BioGnost, Zagreb, Croatia); (3) B. canis-positive polymerase chain reac-

tion (PCR; Tick/Vector Comprehensive RealPCR Panel Canine, IDEXX

Laboratories, Westbrook, Maine); and (4) negative serology for Dirofilaria

immitis, Ehrlichia sp., Anaplasma sp., and Borrelia sp. (SNAP 4Dx Plus,

IDEXX Laboratories). Dogs with visible wounds, neoplasia, and clinical

signs or diagnoses of ectoparasites, allergies, and endocrinopathies were

excluded. After blood collection and laboratory diagnostics, all dogs

received a standard single SC dose of imidocarb-dipropionate (6.6 mg/kg
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of body weight). All dogs were monitored for 15 days and the outcome

(died or recovered)was recorded.

Control dogs were owned by staff members at the Faculty of

Veterinary Medicine, University of Belgrade, Serbia. The dogs were

determined to be clinically healthy based on physical examination and

had no history of B. canis infection, negative results for Babesia by

blood smear examination and PCR, and negative results for other

organisms (SNAP 4Dx Plus, IDEXX Laboratories). Blood was collected

as part of a health check before routine neutering.

Residual serum samples collected for routine laboratory diagnostic

testing were used for all biochemical analyses. Blood samples were col-

lected from the cephalic vein, placed in evacuated glass tubes without

anticoagulant (Vacutainer, BectonDickinson, Franklin Lakes, New Jersey)

and centrifuged at 1500g for 10minutes. Serumwas harvested, placed in

Eppendorf tubes, and stored at−20�C for up to 60 days until analysis.

All dog owners provided signed informed consent that the residual

blood and serum samples obtained for diagnostic purposes could be

used for a scientific study. The Ethical Committee of the Faculty of

Veterinary Medicine, University of Belgrade, approved this study, and

permission was obtained according to the Law for Animal Welfare from

the Ministry of Agriculture and Environmental Protection, Republic of

Serbia (permission number 323-07-03455/2015-05/3).

2.2 | Serum amyloid A as an indicator of the APR

Serum amyloid A concentration was determined using a solid sand-

wich ELISA that was previously validated for dogs (Tridelta Development

Ltd, Maynooth, County Kildare, Ireland).15 The intra-assay precision of

the assay is <10% and the detection limit is 0.8 μg/mL. Absorbance was

measured in microtiter plates on an ELISA plate reader (Elx800, Biotek

Instruments, Highland Park, Winooski, Vermont) at 450 nm.

2.3 | Cholesterol, triglycerides, and phospholipid
analysis

Serum was analyzed for total cholesterol and triglycerides, using rou-

tine clinical biochemistry kits according to the manufacturer's instruc-

tions (CHSL-0507 and TGML-0517, ELITech Clinical Systems, Sées,

France) on a Technicon RA-XT automated biochemistry analyzer

(Bayer Diagnostics, Swords, Co, Dublin, Ireland). Manufacturer controls

were used (CONT 0060 and CONT0061 ELITech Clinical Systems).

Total serum phospholipid concentration was determined by the method

of Zilversmit and Davis.16 Standard solution of KH2PO4 was prepared

for use as a control (PO662, Sigma-Aldrich Chemie, Germany).

2.4 | Complete blood count and biochemistry
analysis

Complete blood counts were done on an impedance-based hematol-

ogy analyzer (Abacus Junior Vet, Diatron, Vienna, Austria) within

2 hours of sampling. Total protein, albumin, glucose, urea nitrogen

and creatinine concentrations and alanine-aminotransferase (ALT),

aspartate-aminotransferase (AST), and alkaline phosphatase (ALP)

activities were measured using routine clinical biochemistry kits according

to the manufacturer's instructions (Elitech, Puteaux, France) on a

Technicon RA-XT automated biochemistry analyzer (Bayer).

2.5 | Serum lipoprotein electrophoresis

Serum lipoproteins were separated by commercial agarose gel electro-

phoresis and stained with Fat Red 7B according to manufacturer

guidelines (SAS Lipoprotein, Helena Laboratories, Beaumont, Texas).

Canine lipoproteins separate into the following bands based on migra-

tion distance in the gel: α1- (HDL-2), α2- (HDL-1), pre-β (very-low-

density lipoproteins [VLDL]), and β (LDL). Because pre-β and β bands

are difficult to distinguish in dogs, they were combined and reported

as triglyceride-rich lipoproteins (TRL).17

Within-run (10 replicates of the same sample on a single gel) and

between-run (a single sample run on 10 different gels) precision for rel-

ative lipoprotein concentrations was tested. Within-run and between-

run precision for TRL was 6.5% and 12.6%, respectively; within-run and

between-run precision for α-lipoproteins was 7.9% and 11.3%, respec-

tively. Densitometry was performed by scanning the gels (Epson Per-

fection V800 Scanner, Seico Epson Corp., Indonesia) and calculating

the relative lipoprotein concentration in each band as a percentage of

the optical absorbance of that fraction (TotalLab TL120, Nonlinear

Dynamics Ltd, Newcastle, UK). Agreement regarding the position of

bands was determined by consensus of 3 of the authors (Z. Milanovi�c,

A. Ili�c Božovi�c, and M. Kova�cevi�c Filipovi�c). Absolute concentrations

of lipoproteins were not determined because according to the manu-

facturer (Helena Laboratories), the lipid stain has a greater affinity

for triglycerides and cholesterol esters than for free cholesterol and

phospholipids. The maximal migration distance of α-lipoprotein bands

in control dogs was measured and the average value was used to nor-

malize maximal migration distances for all samples, including controls.

2.6 | Lipoprotein morphology (diameter)

The diameter of HDL and TRL particles was determined by polyacryl-

amide gradient gel electrophoresis (PAGGE) with a 3%-31% gradient.

Gels were prepared using a Hoefer SE 675 system (Amersham Pharmacia

Biotech, Vienna, Austria) for vertical electrophoresis (Hoefer SE 600 Ruby

system, Amersham Pharmacia Biotech). Electrophoresis time and voltage

were 13 minutes at 60 V, followed by 20 minutes at 170 V, and 20 hours

at 200 V. Gels were stained with Sudan Black B for lipids. Calibration

curves for determining the diameter of HDL and TRL particles were

prepared using carboxylated polystyrene microsphere beads (40 nm

diameter) and proteins with high molecular weights: thyroglobulin

(17.0 nm diameter), ferritin (12.2 nm), lactate dehydrogenase (8.4 nm),

and albumin (7.1 nm). Gels were scanned with Image Scanner III

(Amersham Pharmacia Biotech) and the Magic Scan software (version

4.6;1999; UMAX Data Systems, Inc, Fremont, California). Gels were

analyzed using Image Quant software (version 5.2; 1999; Molecular

Dynamics, Sunnyvale, California) as previously described.18 Briefly, the

diameter of the most prominent peak in the HDL region of each scan,

1688 MILANOVI�C ET AL.



as determined by the software, was designated as the dominant HDL

diameter (nm) and used for statistical analysis.18

2.7 | Apolipoprotein A-1 radioimmunoassay

Serum ApoA-1 concentration was determined using a radioimmunoas-

say as described previously, with minor modifications.19 Polystyrene

star tubes (Maxisorb Thermo Scientific, Denmark) were coated with

ApoA-1 rabbit polyclonal antibody (0.5 μg/tube, sc-30089, Santa Cruz

Biotechnology, Santa Cruz, California) in 0.05 M phosphate buffer,

pH 7.2-7.4 with 0.15 M NaCl (PBS) (Merck, Germany) and incubated at

4�C overnight for antibody adsorption. After incubation, the tubes were

rinsed with PBS and uncoated tube sites were blocked with 1% bovine

serum albumin in PBS for 2 hours at 37�C. After blocking, tubes were

again rinsed with PBS. Antibody radiolabeling with I125 was done by

the method of Hunter and Greenwood20 using 0.025 mg of ApoA-1

antibody and 0.5 mCi of I125 (Institute for Isotopes Co, Ltd, Budapest,

Hungary). Canine serum samples were diluted (1:2) in PBS containing

0.5% casein sodium salt from bovine milk (Sigma-Aldrich Chemie).

All samples (100 μL) were incubated with 100 μL of radiolabeled

ApoA-1 antibodies (5 × 105 cpm/tube) overnight at room tempera-

ture (RT, 21�C-23�C) in antibody-coated tubes. After incubation, the

tubes were rinsed, and bound radioactivity was measured in a Wizard

1470 Automatic γ-counter (PerkinElmer, Inc, Wellesley, Massachu-

setts). The concentration of ApoA-1 in canine serum samples was

expressed in arbitrary units (U) obtained by normalizing the actual

cpm/tube with the average cpm/tube of control samples.

2.8 | Statistical analysis

Data were analyzed using the MedCalc statistical software (version

16.2.1, Ostend, Belgium). Kolmogorov-Smirnov testing indicated the

data were not normally distributed; therefore, differences between

infected and control dogs were evaluated using the Mann-Whitney

test and data reported as median and range (minimum-maximum).

A P value of <.05 was considered significant. Spearman's rank corre-

lation coefficients (rho) were determined to assess the correlation

between SAA and ApoA-1 with HDL diameter and to assess the

correlation between SAA and ApoA-1 levels.

3 | RESULTS

Twenty-nine dogs met the inclusion criteria for acute B. canis infec-

tion. The group consisted of 14 male and 15 female dogs of various

breeds and with a median age of 3 (1–13) years. The clinical outcome

for all of the dogs was full recovery (none of the dogs died). Control

dogs consisted of 5 male and 5 female dogs with a median age of

3 (1–6) years. There was no significant difference in sex ratio or age

between infected and control groups. Dogs with acute B. canis infec-

tion had been anorexic for 24-48 hours, with a median rectal temper-

ature of 40.1�C (range, 39.1�C-41.2�C), tachycardia, and nonpalpable

spleen; lymphadenomegaly was not observed.

Dogs with acute B. canis infection had significantly lower hemato-

crit, neutrophil, lymphocyte, and platelet counts compared with con-

trol dogs (Table 1). Based on reference limits used in our laboratory,

TABLE 1 Hematologic and serum biochemical results (median, minimum, and maximum values) in dogs with acute Babesia canis infection at
the time of presentation, as compared with clinically healthy control dogs

Analyte B. canis-infected (n = 29) Control (n = 10) Reference intervala Pb

RBC (×1012/L) 5.6 (1.4-7.5) 6.7 (5.9-7.5) 5.5-8.5 .03

HGB (g/L) 135 (33-180) 163 (136-181) 120-180 .05

HCT (%) 35.0 (9.0-46.4) 45.2 (37.0-52.0) 37.0-55.0 .008

Total WBC (×109/L) 5.7 (2.3-32.8) 10.5 (6.4-13.9) 6.0-17.0 .01

NEUT (×109/L) 4.5 (1.2-27.4) 9.0 (3.6-11.5) 3.0-12.0 .02

LYM (×109/L) 0.99 (0.34-4.85) 3.60 (1.00-3.79) 1.0-4.8 .01

PLT (×109/L) 46 (20-556) 333 (233-433) 200-500 .001

Total protein (g/L) 60 (40-97) 55 (54-70) 54-75 NSD

Albumin (g/L) 29 (21-38) 29 (25-31) 23-31 NSD

Globulins (g/L) 38 (17-69) 22 (20-32) 16-36 NSD

Glucose (mmol/L) 5.2 (3.2-8.4) 5.2 (4.5-6.1) 4.2-6.6 NSD

ALT (U/L) 37.5 (13-264) 45.5 (30-61) 10-109 NSD

AST (U/L) 48 (13-197) 18 (14-39) 13-60 .02

ALP (U/L) 163 (17-871) 54 (34-77) 11-114 .008

Creatinine (μmol/L) 129.0 (73.1-176.7) 92.4 (78.7-129.4) 54.0-150.0 .04

Urea (mmol/L) 7.3 (3.6-13.0) 5.7 (3.8-7.2) 2.9-10.0 .007

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; HCT, hematocrit; HGB, hemoglobin;

LYM, lymphocytes; NEUT, segmented neutrophils; NSD, not significantly different; PLT, platelets; RBC, red blood cells; WBC, white blood cells.
aReference intervals are from the clinical laboratory in the Faculty of Veterinary Medicine, University of Belgrade, Serbia.
bSignificant differences (P < .05) between infected and control groups (Mann-Whitney test).
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dogs with B. canis infection had anemia (18/29), leukopenia (17/29),

leukocytosis (1/29), lymphopenia (16/29), lymphocytosis (1/29), thrombo-

cytopenia (26/29), and thrombocytosis (1/29). Infected dogs also had sig-

nificantly higher serum AST and ALP activities and creatinine and urea

concentrations compared with control dogs (Table 1). Dogs with B. canis

infection had hyperproteinemia (5/29), hypoproteinemia (10/29), hyper-

albuminemia (13/29), hypoalbuminemia (4/29), hyperglobulinemia (8/29),

hyperglycemia (4/29), hypoglycemia (8/29), azotemia (6/29), and

increased ALT (2/29), AST (12/29), and ALP (20/29) activities.

All dogs with B. canis infection had a strong APR based on a signif-

icant increase in SAA concentration (median, 168.3 μg/mL; range,

98.1-716.2 μg/mL) compared with that of control dogs (3.2 μg/mL,

2.0-4.2 μg/mL; P < .001) (Figure 1).

Dogs with B. canis infection had significantly lower concentrations

of total cholesterol and phospholipids compared with control dogs,

whereas triglyceride concentration did not differ (Figure 2). Control dogs

had clearly distinguishable lipoprotein bands for TRL, α2-lipoproteins

(HDL-1), and α1-lipoproteins (HDL-2) (Figure 3A). Twenty of 29 (69%)

dogs with B. canis infection lacked a separate HDL-2 band, with indis-

tinct separation of α2- and α1-lipoproteins. The maximal migration dis-

tance of α-lipoprotein bands was shorter in dogs infected with B. canis

(median, 0.90; range, 0.82-1.02), compared with control dogs (median,

1.02; range, 0.94-1.02; P = .002) (Figure 3B). Dogs with B. canis infection

had lower relative concentrations of HDL compared with healthy con-

trols, but relative TRL concentrations did not differ (Figure 3C).

Triglyceride-rich lipoprotein and HDL regions on PAGGE were

separated by narrow distinct band(s) previously identified as α2-mac-

roglobulin21 (Figure 4A). Dogs with B. canis infection had an accumu-

lation of larger HDL particles in the region between thyroglobulin

(17 nm) and ferritin (12.2 nm) (Figure 4A). The dominant TRL diame-

ter did not differ between infected and control dogs, whereas the

dominant HDL diameter was significantly larger in dogs with B. canis

infection (Figure 4B). Apolipoprotein A-1 concentration was signifi-

cantly higher in dogs with B. canis as compared with control dogs

(Figure 5). The dominant HDL diameter was positively correlated with

SAA concentration (rho = .43; P = .03), but not with ApoA-1 concentra-

tion (rho = .36; P = .06). There was a significant positive correlation

between SAA and ApoA-1 concentrations (rho = .63, P < .001).

4 | DISCUSSION

Patterns of lipids and lipoproteins in dogs with acute B. canis infection

differed significantly from those in clinically healthy dogs. Decreased

cholesterol and phospholipid concentrations, loss of HDL-2, and an

increased dominant diameter of HDL particles were consistent with

APR-induced changes in lipid metabolism and lipoprotein morphology,

as described in humans and rodents. These findings support decreased

reverse cholesterol transport as well as altered HDL morphology, possi-

bly because of enrichment with SAA. Unlike in other species, ApoA-1

concentrations were increased in dogs with B. canis-induced APR.

Further, triglyceride and TRL concentrations were unaffected, in con-

trast to previous findings in dogs with B. canis infection. These results

confirm and expand upon our understanding of altered lipid metabolism

in dogs with B. canis-induced APR, which might serve as a model for

lipid alterations in dogs with acute inflammation.

High-density lipoprotein is a major carrier of free and esterified

cholesterol and is also rich in phospholipids in healthy dogs,7 such that

the lack of HDL-2 in dogs with B. canis infection likely resulted in the

lower serum total cholesterol and phospholipid concentrations in the

present study. Low concentration of HDL-cholesterol occurs in dogs

with babesiosis,12,22 but the specific HDL type was not determined.

Cattle with acute B. bovis infection have decreased total cholesterol

concentration and a relative decrease in α-lipoproteins (HDL).23

People infected with Babesia also have decreased HDL concentrations.24

F IGURE 1 Serum amyloid A (SAA) concentration in dogs
with acute Babesia canis infection (n = 29) indicate a major acute phase
response, as compared with control dogs (n = 10). Boxes indicate the
lower to upper quartile (25th-75th percentile) and median value.
Whiskers extend to minimum and maximum values, with outliers shown
as individual points (***P < .001)

F IGURE 2 Concentrations of serum total cholesterol (Chol),
phospholipids (PL), and triglycerides (TG) in dogs with Babesia canis
infection and an acute phase response (n = 29) and in control dogs
(n = 10). Boxes indicate the lower to upper quartile (25th-75th percentile)
and median value. Whiskers extend to minimum and maximum values,
with outliers shown as individual points (*P = .02 for Chol, *P = .02 for PL)

1690 MILANOVI�C ET AL.



Our results confirmed that HDL-2 was decreased concurrent with high

SAA levels. One potential mechanism of decreased HDL in acute

inflammation is increased endothelial lipoprotein lipase expression,

which increases the hydrolysis of phospholipids and, in humans, leads

to the catabolism and subsequent decrease of HDL in an APR.25,26

Canine babesiosis increases cortisol and insulin concentration and

decreases thyroid hormone concentration.27,28 Theoretically, these

changes would be expected to induce hypercholesterolemia. How-

ever, low normal cholesterol concentration was observed in dogs

with B. canis infection in the present study, suggesting that increased

utilization of cholesterol in cortisol synthesis may have contributed

at least partly to lower cholesterol and HDL values.

The loss of distinctly separateHDL-1 andHDL-2 bands in lipoprotein

electrophoresis in dogs with B. canis-induced APR was consistent with

the alteration of HDL composition and an increase in the dominant HDL

diameter, as assessed by PAGGE. Increased HDL diameter has been

demonstrated repeatedly in vitro and in vivo in humans and mice with an

APR, always in association with increases in SAA concentration.5,6,29,30

F IGURE 3 Representative lipoprotein (Lp) electrophoretic patterns on agarose gel for A, a control dog and B, a dog with Babesia canis
infection, and C, the relative concentrations of triglyceride-rich lipoproteins (TRL) and high-density lipoproteins (HDL) in infected and control
dogs. A, Control dogs have distinct peaks for TRL, HDL-1, and HDL-2. B, Dogs with B. canis infection and an acute phase response have indistinct
separation between HDL-1 and HDL-2 and an overall shorter migration distance for all lipoproteins. Note the shorter migration distance of
lipoproteins (150th notch on the scale) in the infected dog as compared with the clinically healthy dog (200th notch on the scale). C, Dogs with
B. canis infection have a significantly lower relative HDL concentration compared with control dogs (*P = .04). Boxes indicate the lower to upper
quartile (25th-75th percentile) and median value. Whiskers extend to minimum and maximum values, with outliers shown as individual points
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Indeed, we demonstrated a modest but significant positive correlation

between the concentration of SAA and HDL diameter in the dogs with

B. canis-induced APR. During an APR in bovines other lipophilic serum

proteins are also bound to HDL particles.31 In particular, hemolysis, the

major cause of anemia in B. canis infection, can influence morphology of

HDL through the binding of free hemoglobin and haptoglobin.32

Another potential contribution to expansion of HDL diameter in

dogs with an APR is the lack of adequate HDL remodeling in the liver.

In dogs, 60% of HDL cholesteryl esters are removed from the plasma

through selective uptake by the liver via SR-B1.33 In humans and mice

with APRs, both hepatic lipase and SR-B1 are downregulated.34 Based

on investigations in humans using nuclear magnetic resonance, an

APR results in fewer small- and medium-sized HDL particles, with no

change (and hence a relative increase) in large HDL particles.35 Thus,

the decrease in smaller HDL-2 particles in dogs with B. canis-induced

APR may have resulted from decreased HDL-2 formation because of

altered hepatic lipase and SR-B1 function and/or increased HDL-2

catabolism by endothelial lipase.

In primates and rodents, decreased synthesis or increased catabo-

lism of ApoA-1 in association with increased SAA synthesis has led to

the conclusion by others that the 2 molecules are reciprocally regu-

lated by inflammation.3,36 Unexpectedly, dogs with B. canis-induced

APR and loss of HDL-2 in our study had higher relative ApoA-1 con-

centrations than control dogs. These results confirm those in a recent

study of dogs with babesiosis (in which ApoA-1 was measured using

mass spectrometry),13 but contrast with those in most other species

and types of inflammation, including dogs with Leishmania infection37

and children with malaria (Plasmodium falciparum),38 in which ApoA-1

values decrease together with decreased cholesterol values. in vitro

studies show that binding of SAA to HDL leads to physical displace-

ment of ApoA-1 from HDL particles.5,39 Nevertheless, expression of

SAA in the absence of inflammation does not decrease ApoA-1 levels

in transgenic mice.40 People homozygous for CETP mutations have

increased ApoA-1 levels, but in conjunction with increased HDL cho-

lesterol.41 Thus, the mechanism of increased ApoA-1 in dogs with

B. canis remains uncertain and may be species- or disease-specific.

Increased ApoA-1 in dogs with B. canis infection also might be the

F IGURE 4 Diameter of triglyceride-rich lipoproteins (TRL) and high-density liproproteins (HDL) on polyacrylamide gradient gel electrophoresis
(PAGGE). A, Polyacrylamide gradient gel electrophoresis stained with Sudan Black B for lipids. Control dogs (lanes 1 and 2), dogs with Babesia canis
infection (lanes 3 and 4), and ladder proteins (lane 5; LDH indicates lactate dehydrogenase). Note that B. canis-infected dogs have larger lipoproteins
in the HDL region between thyroglobulin and ferritin; also note the difference between control and infected dogs in the narrow distinct band(s) that
represent α2-macroglobulin. B, Dogs with B. canis infection have significantly larger HDL diameter compared with control dogs (*P = .04), with no
difference in TRL diameter. Boxes indicate the lower to upper quartile (25th-75th percentile) and median value. Whiskers extend to minimum and
maximum values, with outliers shown as individual points

F IGURE 5 Relative apolipoprotein A-1 (ApoA-1) concentrations
in dogs with Babesia canis infection and in control dogs (*P = .02).
Boxes indicate the lower to upper quartile (25th-75th percentile) and
median value. Whiskers extend to minimum and maximum values
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consequence of its increased synthesis or decreased catabolism by

the kidneys.42 Necrosis of renal tubular epithelial cells occurs in fatal

cases of B. canis infection,43 but all infected dogs in the present study

recovered. Additional studies of altered renal catabolism and other

potential mechanisms of increased ApoA-1 in dogs with B. canis infec-

tion and the APR are warranted.

In dogs with B. canis-induced APR in this study, serum concentrations

of triglycerides and TRL did not differ from those in control dogs. In con-

trast, humans and rodents administered lipopolysaccharide (LPS) develop

hypertriglyceridemia as a result of increased production (with low-dose

LPS) or decreased clearance (with high-dose LPS) of VLDL particles.44 In

our study, dogs were anorexic for at least 24 to 48 hours before presen-

tation, which may have lowered triglyceride and TRL levels. Short-term

fasting (36 hours) induces a decrease in TRL in healthy dogs,45 raising the

possibility that any increase in VLDLs caused by inflammation might have

been masked, as has been described for primates and rodents.1 In previ-

ous studies, serum triglycerides concentration in dogs was increased after

the treatment of B. canis infection, suggesting the involvement of this

class of lipids in the APR.12 This reaction is proposed to be beneficial as

triglycerides are a source of fatty acids and a part of the innate defense

system that neutralizes lipophilic toxins.1

5 | LIMITATIONS

Although all the dogs had a noncomplicated form of B. canis infection

without autoimmune hemolytic anemia, acute renal failure, and septic

shock and marked APR, natural infections are heterogeneous, and the

variable amount of time between infection and presentation might have

differentially affected lipoprotein changes in infected dogs. Because all

dogs survived and recovered, we were unable to test the association

between severity of disease or prognosis and lipid and lipoprotein vari-

ables. Also, although concurrent vector-borne infections were excluded

using the SNAP 4Dx Plus test, we cannot rule out the presence of infec-

tious agents for which testing was not done. Potential comorbidities

such as chronic kidney disease also were not ruled out and could have

influenced the results. Although a relatively small number of dogs were

tested in this study, the population comprised all dogs meeting the

inclusion criteria within the designated B. canis tick season.

6 | CONCLUSION

Major changes associated with B. canis-induced APR in dogs are related

to concentration, composition, and morphology of HDL particles pointing

to an altered reverse cholesterol transport. Parallel ApoA-1 and SAA con-

centration increase is a unique still unexplained pathophysiological finding

that warrants further assessment of the prognostic significance.
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