228 research outputs found

    GENERATION OF MOUSE INDUCED PLURIPOTENT STEM CELLS BY PROTEIN TRANSDUCTION.

    Get PDF
    Somatic cell reprogramming has generated enormous interest after the first report by Yamanaka and his coworkers in 2006 on the generation of induced pluripotent stem cells (iPSCs) from mouse fibroblasts. Here we report the generation of stable iPSCs from mouse fibroblasts by recombinant protein transduction (Klf4, Oct4, Sox2 and c-Myc), a procedure designed to circumvent the risks caused by integration of exogenous sequences in the target cell genome associated with gene delivery systems. The recombinant proteins were fused in frame to the GST tag for affinity purification and to the TAT-NLS polypeptide to facilitate membrane penetration and nuclear localization. We performed the reprogramming procedure on embryonic fibroblasts from inbred (C57BL6) and outbred (ICR) mouse strains. The cells were treated with purified proteins four times, at 48-hour intervals, and cultured on mitomycin C treated MEF (mouse embryonic fibroblast) cells in complete embryonic stem cell medium until colonies formed. The iPSCs generated from the outbred fibroblasts exhibited similar morphology and growth properties to embryonic stem (ESC) cells and were sustained in an undifferentiated state for more than 20 passages. The cells were checked for pluripotency-related markers (Oct4, Sox2, Klf4, cMyc, Nanog) by immunocytochemistry and by RT-PCR. The protein iPSCs (piPSCs) formed EBs and subsequently differentiated towards all three germ layer lineages. Importantly the piPSCs could incorporate into the blastocyst and led to variable degrees of chimerism in newborn mice. These data show that recombinant purified cell-penetrating proteins are capable of reprogramming mouse embryonic fibroblasts to iPSCs. We also demonstrated that the cells of the generated cell line satisfied all the requirements of bona fide mouse ESC cells: form round colonies with defined boundaries; have a tendency to attach together with high nuclear/cytoplasmic ratio; express key pluripotency markers; and are capable of in vitro differentiation into ecto-, endo-, and mesoderm, and in vivo chimera formation

    Driving innovation for rare skin cancers: utilizing common tumours and machine learning to predict immune checkpoint inhibitor response

    Get PDF
    Metastatic Merkel cell carcinoma (MCC) and cutaneous squamous cell carcinoma (cSCC) are rare and both show impressive responses to immune checkpoint inhibitor treatment. However, at least 40% of patients do not respond to these expensive and potentially toxic drugs. Development of predictive biomarkers of response and rational, effective combination treatment strategies in these rare, often frail patient populations is challenging. This review discusses the pathophysiology and treatment of MCC and cSCC, with a particular focus on potential biomarkers of response to immunotherapy, and discusses how transfer learning using big data collected from patients with common tumours can be used in combination with deep phenotyping of rare tumours to develop predictive biomarkers and elucidate novel treatment targets

    Pyruvate Dehydrogenase Kinase Inhibition by Dichloroacetate in Melanoma Cells Unveils Metabolic Vulnerabilities

    Get PDF
    Melanoma is characterized by high glucose uptake, partially mediated through elevated pyruvate dehydrogenase kinase (PDK), making PDK a potential treatment target in melanoma. We aimed to reduce glucose uptake in melanoma cell lines through PDK inhibitors dichloroacetate (DCA) and AZD7545 and through PDK knockdown, to inhibit cell growth and potentially unveil metabolic co-vulnerabilities resulting from PDK inhibition. MeWo cells were most sensitive to DCA, while SK-MEL-2 was the least sensitive, with IC50 values ranging from 13.3 to 27.0 mM. DCA strongly reduced PDH phosphorylation and increased the oxygen consumption rate:extracellular acidification rate (OCR:ECAR) ratio up to 6-fold. Knockdown of single PDK isoforms had similar effects on PDH phosphorylation and OCR:ECAR ratio as DCA but did not influence sensitivity to DCA. Growth inhibition by DCA was synergistic with the glutaminase inhibitor CB-839 (2-to 5-fold sensitization) and with diclofenac, known to inhibit monocarboxylate transporters (MCTs) (3-to 8-fold sensitization). CB-839 did not affect the OCR:ECAR response to DCA, whereas diclofenac strongly inhibited ECAR and further increased the OCR:ECAR ratio. We conclude that in melanoma cell lines, DCA reduces proliferation through reprogramming of cellular metabolism and synergizes with other metabolically targeted drugs

    The immune tumour microenvironment of neuroendocrine tumours and its implications for immune checkpoint inhibitors

    Get PDF
    Immunotherapy in the form of immune checkpoint inhibitors (ICIs) has transformed the treatment landscape in numerous types of advanced cancer. However, the majority of patients do not benefit from this treatment modality. Although data are scarce, in general, patients with low-grade neuroendocrine tumours (NETs) do not benefit from treatment with ICIs in contrast to patients with neuroendocrine carcinoma, in which a small subgroup of patients may benefit. Low- and intermediate-grade NETs predominantly lack factors associated with response to ICIs treatment, like immune cell infiltration and have an immunosuppressive tumour metabolism and microenvironment. In addition, because of its potential influence on the response to ICIs, major interest has been shown in the tryptophan-degrading enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). These enzymes work along the kynurenine pathway that deplete tryptophan in the tumour microenvironment. IDO and TDO are especially of interest in NETs since some tumours produce serotonin but the majority do not, which potentially deplete the precursor tryptophan. In this review we summarize the current knowledge on the immune tumour microenvironment of neuroendocrine tumours and implications for treatment with immune checkpoint inhibitors. We also discuss (targetable) factors in the NET tumour microenvironment that potentially modulate the anti-cancer immune response

    Rational use of <sup>18</sup>F-FDG PET/CT in patients with advanced cutaneous melanoma:A systematic review

    Get PDF
    18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is increasingly used in patients with advanced melanoma. Immune checkpoint inhibitors and BRAF/MEK-targeted therapy have transformed the therapeutic landscape of metastatic melanoma. Consequently, a need for markers predicting (early) response to treatment and for monitoring treatment (toxicity) has arisen. This systematic review appraises the current literature evidence for rational use of 18F-FDG PET/CT scans in staging, clinical decision-making, treatment monitoring and follow-up in advanced melanoma. 18F-FDG PET/CT has high overall accuracy for detection of distant metastases and is, combined with cerebral MRI, the preferred imaging strategy for staging metastatic melanoma. In contrast, strong evidence supporting the standard use of 18F-FDG PET/CT for predicting and monitoring therapy response and toxicity is currently lacking. Essential for determining the position of 18F-FDG PET/CT during treatment course in advanced melanoma are well-designed studies with standardized scanning protocols, incorporation of clinical parameters and comparison with contrast-enhanced CT alone

    Clinical benefit of systemic therapies for recurrent ovarian cancer-ESMO-MCBS scores

    Get PDF
    BACKGROUND: Licensed systemic treatment options for platinum-sensitive recurrent ovarian cancer are platinum-based chemotherapy and maintenance treatment with bevacizumab and poly (ADP-ribose) polymerase inhibitors. For platinum-resistant disease, several non-platinum options are available. We aimed to assess the clinical benefit of these treatments according to the European Society of Medical Oncology (ESMO)-Magnitude of Clinical Benefit Scale (MCBS). MATERIALS AND METHODS: A PubMed search was carried out including all studies evaluating systemic treatment of recurrent epithelial ovarian cancer, from 1990 onwards. Randomised trials with an adequate comparator and design showing a statistically significant benefit of the study arm were independently scored by two blinded observers using the ESMO-MCBS. RESULTS: A total of 1127 papers were identified, out of which 61 reported results of randomised trials of sufficient quality. Nineteen trials showed statistically significant results and the studied treatments were graded according to ESMO-MCBS. Only three treatments showed substantial benefit (score of 4 on a scale of 1-5) according to the ESMO-MCBS: platinum-based chemotherapy with paclitaxel in the platinum-sensitive setting and the addition of bevacizumab to chemotherapy in the platinum-resistant setting. The WEE1 inhibitor adavosertib (not licensed) also scores a 4, based on a recent small phase II study. Assessment of quality-of-life data and toxicity using the ESMO-MCBS showed to be complex, which should be taken into account in using this score for clinical decision making. CONCLUSION: Only a few licensed systemic therapies for recurrent ovarian cancer show substantial clinical benefit based on ESMO-MCBS scores. Trials demonstrating overall survival benefit are sparse
    corecore