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Metastatic Merkel cell carcinoma (MCC) and cutaneous squamous cell carcinoma (¢SCC) are rare and both show
impressive responses to immune checkpoint inhibitor treatment. However, at least 40% of patients do not respond
to these expensive and potentially toxic drugs. Development of predictive biomarkers of response and rational,
effective combination treatment strategies in these rare, often frail patient populations is challenging. This review
discusses the pathophysiology and treatment of MCC and ¢SCC, with a particular focus on potential biomarkers of

response to immunotherapy, and discusses how transfer learning using big data collected from patients with
common tumours can be used in combination with deep phenotyping of rare tumours to develop predictive
biomarkers and elucidate novel treatment targets.

Introduction

Merkel cell carcinoma (MCC) and cutaneous squamous cell carcinoma
(cSCC) are rare in the metastatic setting. The treatment landscape for
patients with inoperable or metastatic MCC and c¢SCC has changed
rapidly since the introduction of immune checkpoint inhibitors (ICIs).
International efforts have resulted in prospective, non-randomized, sin-
gle-arm phase 2 studies evaluating ICIs in MCC and cSCC. Trials with the
programmed death ligand 1 (PD-L1) antibody avelumab and the pro-
grammed death 1 (PD-1) antibodies pembrolizumab and cemiplimab
have demonstrated objective response rates (ORRs, complete plus partial
responses) of up to ~60% metastatic MCC and ¢SCC with subsets of
patients achieving long-term disease control [1-5].

Despite impressive response rates, most patients with metastatic MCC
and ¢SCC do not achieve long-term benefit from ICIs due to either primary
or secondary resistance. For common ICI-sensitive tumours, efforts are
focused on the identification of predictive response biomarkers and rational
combinational strategies to enhance anti-cancer immune responses. Evi-
dence is emerging that a complex set of tumour, patient and environmental
factors govern the strength and timing of the anti-cancer immune response
[6,7]. Understanding the role of these immune-modulating factors in met-
astatic MCC and ¢SCC is hampered by scarcity of data.

This review presents a brief overview of the pathophysiology and
treatment of metastatic MCC and cSCC, focused on potential biomarkers

of ICI response, and describes how big data from common tumours can be
pooled with the limited available data from rare tumours to help move
the treatment of patients with metastatic MCC and cSCC forward (Fig. 1).
This is essential as, despite the successes of immunotherapy, the majority
of these frail, elderly patients will still die from their disease, and patients
who do not respond to therapy are potentially exposed to unnecessary
toxicity.

Merkel cell carcinoma: pathophysiology and treatment

MCC is an aggressive, rare skin tumour known for its rapid growth
and its likelihood to metastasize. Individuals with a history of extensive
sun exposure and immune suppression are at increased risk, and inci-
dence increases with age [8-10].

MCC was initially thought to originate from skin mechanoreceptors
called ‘Merkel cells’; however, the cell of origin of MCC is a matter of
ongoing debate [11,12]. There are two main routes of pathogenesis for
MCC, namely integration of the Merkel cell polyomavirus (MCPyV) into
the genome and exposure to ultra-violet (UV) radiation. MCPyV is a
common virus with 60-80% seroprevalence in healthy adults, and ~80%
of MCCs are MCPyV-positive [13]. For malignant transformation, the
virus must be clonally integrated into the host genome at a location
resulting in durable expression of viral oncoproteins [14].
Non-virally-associated MCCs have a UV-radiation-associated mutational
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Figure 1. Schematic overview of how data from common tumours can be used in combination with machine learning to predict immune checkpoint inhibitor re-
sponses in rare tumours. A big-data warehouse is constructed by pooling data from public repositories, clinical trials and biobanks. Data consist of clinicopathological,
multi-omics and imaging data from common and rare tumours. By applying appropriate statistical inference on this big-data warehouse, clinicopathological, omics and
imaging features can be selected that are strongly associated with immunological parameters potentially relevant to the cancer-immune setpoint. These selected
features have the highest likelihood of contributing to the accuracy of a predictive model for response to immunotherapy. By using only these selected features as input
parameters, the relatively small-scale cohorts of patients treated with immunotherapy can be used to train an accurate and non-overfitted predictive model, which will
ultimately improve patient selection for this treatment.
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signature [15]. The mutational burden in these UV-associated MCCs is
many times higher than in their virally-induced counterparts and at least
as high as in cutaneous melanoma [15,16]. Just over 10% of MCC pa-
tients with localized disease develop visceral metastases, and the 5-year
overall survival (OS) of these patients was <20% prior to the introduc-
tion of ICIs [17]. Data from retrospective series demonstrated that met-
astatic MCC is highly sensitive to platinum-based chemotherapy
combinations with an ~75% overall response rate. However, resistance
to chemotherapy occurs quickly with a median progression-free survival
of only ~3 months [18]. Expression of viral antigens and high mutational
load are both associated with anti-cancer immune responses in other
tumour types, and this provided a clear rationale for performing studies
with ICIs in metastatic MCC.

Avelumab was evaluated in an open-label, single-arm, multi-centre
study in 88 patients with metastatic MCC after previous line(s) of
chemotherapy (JAVELIN Merkel 200 Part A) [2]. The ORR was 33%.
Among the responders (n = 29), 21 (74%) patients had an ongoing
response at 1 year [3]. Of the patients responding at weeks 7 and 13, 90%
were still alive 18 months after initiation of treatment, compared with
20-26% of the non-responders [19]. In parallel, avelumab was tested as
first-line therapy in metastatic MCC (JAVELIN Merkel 200 Part B). At
pre-planned interim analysis in 29 patients with at least 3 months of
follow-up, the ORR was 62% with 14 of 18 patients with an ongoing
response (78%) at the time of analysis [4]. Pembrolizumab was also
evaluated as first-line therapy in patients (n = 50) with advanced MCC
(KEYNOTE 017), and similar ORR (56%) and durable responses (79% at
2 years) were observed [20]. Avelumab and pembrolizumab both scored
3 (Table 1) on the ESMO-Magnitude of Clinical Benefit Scale Version 1.1
(ESMO-MCBS), which is a good result for a single-arm study lacking
quality-of-life data [21].

Metastatic cutaneous squamous cell carcinoma: pathophysiology
and treatment

¢SCC is the second most common skin cancer in the primary setting,
but is rare in the metastatic setting with only 2% of patients developing
distant metastases [22]. Incidence increases with age, and other risk
factors include immunosuppression and sun exposure [23]. ¢SCC is
characterized by a high mutational burden of 50 mutations/Mb, which is
approximately four to five times higher than in cutaneous melanoma [24,
25]. Interestingly, beta genus human papilloma virus may be a co-factor
in cSCC development; therefore, as in MCC, expression of viral antigens

Table 1
Trials with immune checkpoint inhibitors in metastatic Merkel cell carcinoma
(MCC) and cutaneous squamous cell carcinoma (¢SCC)

Merkel cell carcinoma ORR (95% 1 year OS ESMO-
[@)] MCBS
Avelumab (anti-PD-L1)
First-line treatment (n — 29) 62% Data not 3
(42-79) available
Second-line treatment for metastatic 33% 52% 3
MCC (n = 88) (23-44)
Pembrolizumab (anti-PD-1)
First-line treatment for recurrent locally  56% 72% 3
advanced or metastatic MCC (n = 50) (35-76)
Cutaneous squamous cell carcinoma ORR (95% 1 year OS ESMO-
cn MCBS
Cemiplimab (anti-PD-1)
First- or second-line treatment for 47% Data not 3
metastatic ¢SCC (n = 59) (34-61) available

The ESMO-Magnitude of Clinical Benefit Scale Version 1.1 (ESMO-MCBS) is a
tool for evaluation of the magnitude of benefit from clinical studies [21]. The
maximum score for a single-arm study is 4 and can only be achieved when
quality-of-life data are available.

ORR, objective response rate; CI, confidence interval; OS, overall survival; PD-L1,
programmed death ligand 1; PD-1, programmed death 1.
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could play a role in sensitivity to ICIs [26]. Additionally, the NOTCH
signalling pathway has been implicated in ¢SCC and may influence im-
mune infiltration of these tumours [22,27,28]. In the case of inoperable
recurrence or metastatic disease, median OS is < 5 months [29].

Metastatic ¢SCC can respond to various chemotherapeutic agents
including cisplatin, docetaxel and cetuximab, a monoclonal antibody
targeting the epidermal growth factor receptor. However, no standard
exists due to lack of prospective studies [30].

The PD-1 antibody cemiplimab was studied in an open-label, single-
arm, phase 1/2 trial in patients with locally advanced or metastatic ¢SCC
[5]. In the phase 2 part of the trial in metastatic patients (n = 59), an ORR
of 47% was achieved; of the 28 responding patients, 82% continued to
have a response at the time of data cut-off and the duration of response
was >6 months in 57%. Updated data after median follow-up of 17
months showed a 49% ORR [31]. Preliminary data on an additional
group of metastatic ¢SCC patients (n = 56) treated with fixed-dose
cemiplimab showed an ORR of 39% at median 8 months of follow-up
with median duration of response not yet reached [31]. Cemiplimab
scored 3 on the ESMO-MCBS with this single-arm study lacking
quality-of-life data (Table 1).

Predicting response and resistance to immune checkpoint
inhibitors

Tumour cells undergo molecular ‘rewiring’ during carcinogenesis to
escape destruction by the immune system. The equilibrium between the
complex set of patient, tumour and environmental factors that promote or
suppress the anti-cancer immune response is known as the ‘cancer-immune
setpoint’ [6]. The cancer-immune setpoint represents the threshold that
must be surpassed for a person with cancer to respond to ICIs. Factors
influencing the setpoint differ between patients and include degree of
tumour foreignness, general immune status of the patient, immune cell
infiltration of the tumour, expression of checkpoints and absence of
inhibitory tumour metabolism [7]. This knowledge has not translated into
reliable factors that clearly aid in selection of patients for immunotherapy
across tumour types; however, a number of factors have some utility as
single factors and may be of interest in MCC and ¢SCC [32].

PD-L1 expression

Immunohistochemical expression of PD-L1 in pre-treatment tumour
biopsies is currently used to select patients with non-small-cell lung,
breast and cervical cancer for treatment with ICIs [33-35]. However, its
value in patient selection varies across tumour types, and patients
without PD-L1 expression can respond to ICI treatment in all settings [36,
37]. This is likely due to heterogeneity in the expression of PD-L1 be-
tween and within tumours and receptor turnover [38,39]. In a small
study with whole-body, non-invasive PD-L1 imaging using
zirconium-89-labelled atezolizumab, tumour uptake of the tracer pre-
dicted response in a group of patients including non-small-cell lung
cancer, bladder cancer and triple-negative breast cancer, while immu-
nohistochemical PD-L1 tumour expression failed to do so [40].

PD-L1 can be expressed by tumour cells and by infiltrating immune
cells in the tumour micro-environment. In a retrospective study including
67 tumour specimens from 49 MCC patients, tumour PD-L1 expression
was associated with improved survival [41]. Patients with
chemotherapy-refractory MCC and positive immunohistochemical PD-L1
expression (1% staining threshold in tumour cells) in pre-treatment bi-
opsies appeared to be more likely to respond to avelumab (ORR 35% in
PD-L1-positive versus 19% in PD-L1-negative) [2,3]. In the first-line
avelumab study in MCC, data on PD-L1 were not reported [4]. In the
pembrolizumab MCC study, tumour PD-L1 expression was more frequent
in MCPyV-positive tumours than in virus-negative tumours (71% versus
25%), but was not associated with response [1,20]. In both studies, du-
rable responses were seen irrespective of tumour PD-L1 status. Although
PD-L1 expression has been described as a potential prognostic marker in
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metastatic cSCC, it has not been reported whether response is related to
PD-L1 expression status [5,42—44].

Tumour-infiltrating lymphocytes

The presence of tumour-infiltrating lymphocytes (TILs) is associated
with better prognosis irrespective of treatment in many cancer types,
including melanoma and MCC [45]. Increased presence of T cells at the
invasive tumour margin and in the tumour prior to treatment, as well as an
increase in tumour-infiltrating T-cells during treatment, are positively
associated with response to pembrolizumab in patients with melanoma
[46]. TILs specific to MCPyV oncoproteins are enriched in some
MCPyV-positive MCCs and associated with enhanced expression of both
PD-L1 and PD-1 [47,48]. The number of TILs is almost two times higher in
MCPyV-positive MCC than in MCPyV-negative MCC, and high intra-
tumoural T-cell counts were associated with improved survival in both
MCPyV-positive and MCPyV-negative MCC [49]. In the preliminary anal-
ysis of the pembrolizumab trial, TILs were not significantly correlated with
viral status or clinical response [1]. TILs have not been evaluated in cSCC.

Tumour mutational burden

The total number of mutations present in a tumour specimen is
termed the ‘mutation load’ or ‘tumour mutational burden’ (TMB). Highly
mutated tumours are more likely to harbour neo-antigens that can be
recognized by the immune system. In several tumour types, a high TMB
has been associated with improved response to both cytotoxic T-
lymphocyte-associated antigen 4 (CTLA-4) and PD-1 inhibition [50,51].
The measurement of TMB is complicated by the lack of a standard
assessment method and intratumoural heterogeneity [52,53]. Moreover,
patients with a low TMB can also respond to ICIs. MCPyV-negative MCC
tumours have a 25-fold higher TMB than MCPyV-positive tumours, and
are characterized by classic UV-signature mutations [15]. TMB was not
measured in the clinical trials in MCC. The classic UV signature is also
found in ¢SCC and TMB is generally high, but TMB was not associated
with an ICI response in the cemiplimab study [5,42].

Viral status of the tumour

Viruses drive carcinogenesis in human cancers through diverse
mechanisms including expression of viral oncoproteins. Oncogenic viral
integration in tumour cells is thought to recruit immune effector cells
into the tumour micro-environment and upregulate PD-1 and CTLA-4
immunosuppressive pathways, and therefore virally induced tumours
may be more likely to respond to ICIs [54]. Expression of MCPyV large
T-antigen by tumour cells can be measured by immunohistochemical
analysis. In the second-line avelumab study, objective responses occurred
in 12 of 46 (26%) patients who tested positive for MCPyV and in 11 of 31
(36%) patients who tested negative for MCPyV. This was determined
using a monoclonal antibody specific for MCPyV large T-antigen [2]. The
viral status of patients was not reported in the first-line avelumab study.
In the MCC pembrolizumab study, expression of the MCPyV large T-an-
tigen oncoprotein was determined by immunohistochemistry, and was
complemented by assessment of the presence of serum antibodies or
circulating T cells specific for MCPyV oncoproteins [1]. Responses to
pembrolizumab were observed in both MCPyV-positive and
MCPyV-negative MCC. As with TMB, viral status alone is unlikely to be a
predictive marker. Virus-negative tumours have a UV mutational signa-
ture with an associated high mutational burden and therefore an alter-
native reason to respond to ICIs.

A strategy to improve immunotherapy treatment in patients with
metastatic MCC and ¢SCC

Utilizing preclinical tumour models and small-scale patient cohorts,
factors associated with the cancer-immune setpoint have been identified in
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common cancer types. However, only limited factors were studied in the
clinical trials in MCC and ¢SCC, and none of the factors investigated have
proven to be sufficient to select patients for immune checkpoint inhibition.
Moreover, interesting potentially predictive factors, such as combinations
of various markers, signatures from gene expression profiling and data on
the diversity or contents of the patient's faecal microbiome, have not been
investigated in these rare tumours. Accrual to new trials in MCC and ¢SCC
will be challenging as patients now have access to immunotherapy as
standard of care. The question arises how to decide which biomarkers or
combination strategies should be prioritized in novel trials.

To improve understanding of the cancer-immune setpoint and to
enable rational prioritization of potential biomarkers and treatment
strategies in MCC and cSCC, the small-scale MCC and cSCC data must be
combined with big data from common cancers. This requires a holistic
approach that simultaneously incorporates a host of distinct but related
clinicopathological, multi-omics and imaging features characterizing the
patient, the tumour and the tumour microenvironment. This can be done
most effectively by taking advantage of recent developments in machine
learning algorithms capable of distilling complex multilayered informa-
tion from multifactorial big data [55]. The first step would be to build a
big-data warehouse containing clinicopathological, multi-omics and
imaging data from patients with rare and common cancers [56] (Fig. 1).

Which big data should be entered into the data warehouse?

To construct the big-data warehouse, multiple types of data from both
common and rare tumours must be combined. Firstly, clinicopathological
data are required, including patient demographics, tumour type and
stage, tumour characteristics including grade and routine immunohis-
tochemical staining results, routine baseline laboratory tests, and anti-
cancer treatments including response rates and survival data. Such clin-
ical data have proven to have predictive and/or prognostic value in
various settings in cancer patients [57,58]. Secondly, imaging data are
required. These include raw data of standard-of-care imaging such as
computed tomography and magnetic resonance imaging, as these data
can be used to extract mineable high-dimension data, a process known as
‘radiomics’ [59]. '8F-labelled fluoro-2- deoxyglucose-positron emission
tomography (PET) scans are used routinely for staging, but actually
measure tumour glucose uptake and therefore contain information on the
metabolic profile of the tumour [60]. Increasingly, studies using molec-
ular PET imaging are being performed in small-scale clinical trials, and
such scans provide whole-body data on drug distribution, expression of
immune checkpoint proteins such as PD-L1 or PD-1, and
immune-response-related factors such as interleukin-2 or presence of
CD8 cells essential for an immune-related response [40,61-63]. Thirdly,
multi-omics data (e.g. genomics, transcriptomics, proteomics, metab-
olomics and microbiomics) are desirable to characterize the patient's
immune system, the tumour and the tumour microenvironment.

How can big data be collected?

Multiple sources can be used to fill the big-data warehouse, such as
repositories in the public domain, past and ongoing large-scale and small-
scale clinical trials, and data from biobanking initiatives. Public re-
positories such as the Cancer Genome Atlas, the Gene Expression Omnibus
and ArrayExpress can provide a major contribution to this big-data ware-
house [64-66]. Tens of thousands of genomic and transcriptomic profiles
are available for a broad spectrum of rare and common cancer types in
combination with a variable amount of metadata describing patient,
tumour or treatment characteristics. Although the vast majority of these
samples are from patients not treated with immunotherapy and therefore
lack phenotypic data on anti-cancer immune responses, they are still an
extremely valuable resource to model the cancer-immune set-point [67].
Currently, several gene-expression-based computational deconvolution
methods (e.g. CIBERSORT) are available that can complement the avail-
able gene expression profiles with inferred immunological parameters



J.S. Hooiveld-Noeken et al

describing the type, fraction or functionality of immune cells present
within the tumour microenvironment [68]. This is relevant as, ultimately,
immune cells present in the tumour microenvironment effectuate the
anti-cancer immune response. Therefore, these inferred immunological
parameters can be used as proxy phenotypes for the cancer-immune set-—
point. A major challenge in using data from public repositories is that
metadata are described by unstructured text for most individual samples.
To address this, an array of tools can be used to identify relevant samples
and extract relevant metadata, such as machine learning algorithms used in
natural language processing (e.g. context-unaware deep learning and latent
semantic indexing), expression signature-based classifier tools and
crowdsourcing tools (Table 2). The resulting annotations can be combined
with a manual integration and curation step to produce high-quality
consensus sample annotations, enabling the identification of relevant
samples and relevant metadata.

Large randomized and small translational clinical trials on immuno-
therapeutic interventions in common and rare tumours are a rich data
source which should be publicly accessible for research. In addition, a
wealth of data is available in registries, biobanking initiatives and, oc-
casionally, single expert-centre case series for rare tumours [69,70]. To
enable ongoing collection of as much data as possible from patients with
metastatic MCC and ¢SCC, it is essential that all of these patients are seen
at a specialized centre at least once after diagnosis. In this way, suitable
patients can be preferentially enrolled in clinical trials, either with novel
(combination) treatment strategies, or biomarker or imaging studies.
Patients not eligible for clinical trials can provide clinical data and bio-
materials before and during treatment with standard-of-care therapies.
Concerns about travelling distance to centres for older and frail patients
with rare tumours are real [71]. Considering providing the actual treat-
ment closer to home, and continuing contact with the specialized centre
for follow-up can mitigate this. At time of progression, biomaterials can
be collected again and second-line treatment can be considered.

Importing data into the warehouse should be in accordance with the
findable, accessible, interoperable and reusable (FAIR) principles. In
addition, ethical, legal and social issues regarding these data sources and
their use are essential to consider [72,73].

Utilization of the big-data warehouse

The big-data warehouse can be used to develop a neural network
(NN) capable of predicting response to immunotherapy in both common
cancers and rare tumours such as MCC and ¢SCC [74] (Fig. 1). Such a
predictive NN can use, for example, omics, and classical clinicopatho-
logical and imaging features as input parameters.

However, the number of samples treated with immunotherapy and
available for training such a predictive NN is relatively small for rare
cancers when compared with the huge number of potential input

Table 2
Examples of tools for sample identification in public repositories

Automatic text mining tools

Zooma/OntoCat http://www.ebi.ac.uk/spot/zooma/

Expression signature-based classifier tools

GEMENI http://genomics.wpi.edu/gemini/

SPIED3 http://www.spied.org.uk/cgi-bin/HGNC-SPI
ED3.1.cgi

ProfileChaser http://profilechaser.ucsf.edu/

ExpressionBlast http://www_expression.cs.cmu.edu/

SEEK http://seek.princeton.edu

Crowdsourcing tools

Search Tag Analyze Resource
CREEDS
ADEPTUS

http://stargeo.org/
http://amp.pharm.mssm.edu/creeds/
http://acgt.cs.tau.ac.il/adeptus/

Selection of tools that can be used to identify relevant samples in public
repositories.
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parameters (e.g. 20 000 gene expression profiles). This can result in
overfitting, which happens when a predictive NN learns the detail and
noise in the training data to the extent that it negatively impacts the
performance of the predictive NN on new data [75]. Therefore, to avoid
overfitting of such a predictive NN, a key step is to reduce the architec-
tural complexity of the predictive NN. This can be done by reducing the
number of input parameters by feature selection [76]. Data from rare and
common cancers in the big-data warehouse can be used for feature se-
lection. By applying appropriate statistical inference, clinicopathological,
omics and imaging features associated with (inferred) immunological
parameters potentially relevant to the cancer-immune setpoint can be
identified reliably. This step enables selection of features with the most
robust associations that have the highest likelihood of contributing to the
accuracy of the predictive NN for predicting the response to immuno-
therapy. Another solution to unlock the relatively small data of common
and rare cancers treated with ICIs for predictive NNs is the concept of
transfer learning, which is a machine learning method where a model
developed for a task is re-used as the starting point for a model on a
second task. For example, generative adversarial nets or autoencoders
can be used to extract a biologically relevant latent space from the tens of
thousands of expression profiles generated for common and rare tumour
types available within the public domain [77,78]. This will reduce the
dimensionality of the data, for example, from 20 000 genes to 100 latent
variables. These latent variables could be interpreted as the activity of
biological signalling pathways or processes. Subsequently, using these
100 latent variables as input parameters for another model might enable
the development of a less-complex predictive NN capable of predicting
the response to immunotherapy. Such a predictive NN can be trained
using training sets of limited size. These training sets can be formed by
pooling and using all available data from series of patients with rare or
common cancers treated with immunotherapy. In this way the relatively
small-scale cohorts of patients treated with immunotherapy can be used
to train an accurate and non-overfitted predictive model, which will ul-
timately improve patient selection for this treatment. The features
identified during model training may contain targetable components that
potentially modify the cancer-immune setpoint, and are of interest to
enhance anti-cancer immune responses in patients with rare or common
cancers.

Discussion and conclusions

The number of approved ICIs and their indications are expanding
rapidly and there are >2000 active clinical trials underway in which
immunotherapy strategies are being investigated [79]. Extreme re-
sponses to ICIs have been observed in several rare cancers (e.g. MCC,
¢SCC, subgroups of sarcoma and natural killer T-cell lymphoma) [80,81].
However, in general, with the increasing number of indications, the
average percentage of patients per disease (subtype) type responding to
treatment with ICIs is decreasing [82]. There is a large unmet need for
biomarkers predictive of response and data to support rational combi-
national strategies in both rare and more common tumours.

According to the RARECAREnet database on the epidemiology of rare
cancers in Europe, rare cancers are those with an incidence rate of <6 per
100 000 per year in the European population [83]. In total, rare tumours
comprise almost 25% of all new cancer diagnoses and therefore form a
substantial data source. The way forward for rare cancers, such as met-
astatic MCG and ¢SCC, may be to pool data from both common and rare
tumours to construct an NN capable of predicting response to immuno-
therapy in individual rare and common cancers [84,85]. Clinicopatho-
logical data, as well as raw images from scans from large-scale and
small-scale clinical trials and single and multicentre biobanking initia-
tives, should be made available. To enhance the quantity of data on rare
cancers, centralization of patient care should be supported and patients
with rare cancers should be seen at least once at a specialized centre. The
pooled data as well as the predictive NN should be widely accessible.
Provision of data could be coupled to use of the database and NN to
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encourage data sharing and ensure continuous input into the model.
Once the NN is available, the next step is to use it in a prospective clinical
trial with ICIs to determine how accurately it can predict response.

In conclusion, the way forward for rare cancers such as metastatic
MCC and ¢SCC may be through pooling of data with data from more
common immunotherapy-sensitive tumours in order to allow construc-
tion of NNs capable of predicting response to immunotherapeutic
strategies.
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