332 research outputs found

    Setting up a Common European Asylum System : Report on the application of existing instruments and proposals for the new system

    Get PDF
    The study assesses firstly the evaluation process of the first generation of asylum instruments while underlining the possibilities to improve it. It analyses secondly the asylum "acquis" regarding distribution of refugees between Member States, the eligibility for protection, the status of protected persons regarding detention and vulnerability, asylum procedures and the external dimension by formulating short-term recommendations of each area. Its last part is devoted to the long term evolution of the Common European Asylum System regarding the legal context including the accession of the EU to the Geneva Convention, the institutional perspectives including the new European Support Office, the jurisdictional perspective, the substantive perspective, the distributive perspective and the external perspective

    Hypothalamic Reactive Oxygen Species Are Required for Insulin-Induced Food Intake Inhibition: An NADPH Oxidase–Dependent Mechanism

    Get PDF
    1939-327X (Electronic) Journal Article Research Support, Non-U.S. Gov'tOBJECTIVE: Insulin plays an important role in the hypothalamic control of energy balance, especially by reducing food intake. Emerging data point to a pivotal role of reactive oxygen species (ROS) in energy homeostasis regulation, but their involvement in the anorexigenic effect of insulin is unknown. Furthermore, ROS signal derived from NADPH oxidase activation is required for physiological insulin effects in peripheral cells. In this study, we investigated the involvement of hypothalamic ROS and NADPH oxidase in the feeding behavior regulation by insulin. RESEARCH DESIGN AND METHODS: We first measured hypothalamic ROS levels and food intake after acute intracerebroventricular injection of insulin. Second, effect of pretreatment with a ROS scavenger or an NADPH oxidase inhibitor was evaluated. Third, we examined the consequences of two nutritional conditions of central insulin unresponsiveness (fasting or short-term high-fat diet) on the ability of insulin to modify ROS level and food intake. RESULTS: In normal chow-fed mice, insulin inhibited food intake. At the same dose, insulin rapidly and transiently increased hypothalamic ROS levels by 36%. The pharmacological suppression of this insulin-stimulated ROS elevation, either by antioxidant or by an NADPH oxidase inhibitor, abolished the anorexigenic effect of insulin. Finally, in fasted and short-term high-fat diet-fed mice, insulin did not promote elevation of ROS level and food intake inhibition, likely because of an increase in hypothalamic diet-induced antioxidant defense systems. CONCLUSIONS: A hypothalamic ROS increase through NADPH oxidase is required for the anorexigenic effect of insulin

    The longitudinal changes of BOLD response and cerebral hemodynamics from acute to subacute stroke. A fMRI and TCD study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By mapping the dynamics of brain reorganization, functional magnetic resonance imaging MRI (fMRI) has allowed for significant progress in understanding cerebral plasticity phenomena after a stroke. However, cerebro-vascular diseases can affect blood oxygen level dependent (BOLD) signal. Cerebral autoregulation is a primary function of cerebral hemodynamics, which allows to maintain a relatively constant blood flow despite changes in arterial blood pressure and perfusion pressure. Cerebral autoregulation is reported to become less effective in the early phases post-stroke.</p> <p>This study investigated whether any impairment of cerebral hemodynamics that occurs during the acute and the subacute phases of ischemic stroke is related to changes in BOLD response.</p> <p>We enrolled six aphasic patients affected by acute stroke. All patients underwent a Transcranial Doppler to assess cerebral autoregulation (Mx index) and fMRI to evaluate the amplitude and the peak latency (time to peak-TTP) of BOLD response in the acute (i.e., within four days of stroke occurrence) and the subacute (i.e., between five and twelve days after stroke onset) stroke phases.</p> <p>Results</p> <p>As patients advanced from the acute to subacute stroke phase, the affected hemisphere presented a BOLD TTP increase (p = 0.04) and a deterioration of cerebral autoregulation (Mx index increase, p = 0.046). A similar but not significant trend was observed also in the unaffected hemisphere. When the two hemispheres were grouped together, BOLD TTP delay was significantly related to worsening cerebral autoregulation (Mx index increase) (Spearman's rho = 0.734; p = 0.01).</p> <p>Conclusions</p> <p>The hemodynamic response function subtending BOLD signal may present a delay in peak latency that arises as patients advance from the acute to the subacute stroke phase. This delay is related to the deterioration of cerebral hemodynamics. These findings suggest that remodeling the fMRI hemodynamic response function in the different phases of stroke may optimize the detection of BOLD signal changes.</p

    Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa

    Get PDF
    Genetic determinants of antibiotic resistance (AR) have been extensively investigated. High-throughput sequencing allows for the assessment of the relationship between genotype and phenotype. A panel of 672 Pseudomonas aeruginosa strains was analysed, including representatives of globally disseminated multidrug-resistant and extensively drug-resistant clones; genomes and multiple antibiograms were available. This panel was annotated for AR gene presence and polymorphism, defining a resistome in which integrons were included. Integrons were present in >70 distinct cassettes, with In5 being the most prevalent. Some cassettes closely associated with clonal complexes, whereas others spread across the phylogenetic diversity, highlighting the importance of horizontal transfer. A resistome-wide association study (RWAS) was performed for clinically relevant antibiotics by correlating the variability in minimum inhibitory concentration (MIC) values with resistome data. Resistome annotation identified 147 loci associated with AR. These loci consisted mainly of acquired genomic elements and intrinsic genes. The RWAS allowed for correct identification of resistance mechanisms for meropenem, amikacin, levofloxacin and cefepime, and added 46 novel mutations. Among these, 29 were variants of the oprD gene associated with variation in meropenem MIC. Using genomic and MIC data, phenotypic AR was successfully correlated with molecular determinants at the whole-genome sequence level
    corecore