290,643 research outputs found

    Multi-copy and stochastic transformation of multipartite pure states

    Full text link
    Characterizing the transformation and classification of multipartite entangled states is a basic problem in quantum information. We study the problem under two most common environments, local operations and classical communications (LOCC), stochastic LOCC and two more general environments, multi-copy LOCC (MCLOCC) and multi-copy SLOCC (MCSLOCC). We show that two transformable multipartite states under LOCC or SLOCC are also transformable under MCLOCC and MCSLOCC. What's more, these two environments are equivalent in the sense that two transformable states under MCLOCC are also transformable under MCSLOCC, and vice versa. Based on these environments we classify the multipartite pure states into a few inequivalent sets and orbits, between which we build the partial order to decide their transformation. In particular, we investigate the structure of SLOCC-equivalent states in terms of tensor rank, which is known as the generalized Schmidt rank. Given the tensor rank, we show that GHZ states can be used to generate all states with a smaller or equivalent tensor rank under SLOCC, and all reduced separable states with a cardinality smaller or equivalent than the tensor rank under LOCC. Using these concepts, we extended the concept of "maximally entangled state" in the multi-partite system.Comment: 8 pages, 1 figure, revised version according to colleagues' comment

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,zΣx,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669

    Cycling and Health Innovative Pilot Projects (Executive summary)

    Get PDF
    The Cycling and Health Innovative Pilot Project (CHIPPS) provided cycle training for adults in Nottingham and Northamptonshire from 2007 to 2010. The Primary Care Trusts in each area have delivered these projects in collaboration with partners. In Nottingham collaboration with Ridewise delivered the Cycling for Health Project that aimed to involve people from deprived communities and employees of the Primary Care Trust; in Northamptonshire the Easy Rider project delivered via Age UK was also aimed at those living in deprived areas and middle-aged people. Throughout the three years the initiative was evaluated by the Carnegie Research Institute of Leeds Metropolitan University. Those taking part completed questionnaires at the outset, at the end of their training, three months later and finally after a year. In addition, a mix of one-to-one interviews and focus groups were conducted with policy makers, those delivering the projects and participants (including those who dropped out)

    SO_0(1,d+1) Racah coefficients: Type I representations

    Full text link
    We use AdS/CFT inspired methods to study the Racah coefficients for type I representations of the Lorentz group SO_0(1,d+1) with d>1. For such representations (a multiple of) the Racah coefficient can be represented as an integral of a product of 6 bulk-to-bulk propagators over 4 copies of the hyperbolic space H_{d+1}. To compute the integrals we represent the bulk-to-bulk propagators in terms of bulk-to-boundary ones. The bulk integrals can be computed explicitly, and the boundary integrations are carried out by introducing Feynman parameters. The final result is an integral representation of the Racah coefficient given by 4 Barnes-Mellin type integrals.Comment: 20 pages, 1 figure. v2: Case d=1 corrected, case d>1 clarifie

    Fuzzy de Sitter Space from kappa-Minkowski Space in Matrix Basis

    Get PDF
    We consider the Lie group RκD\mathbb{R}^D_\kappa generated by the Lie algebra of κ\kappa-Minkowski space. Imposing the invariance of the metric under the pull-back of diffeomorphisms induced by right translations in the group, we show that a unique right invariant metric is associated with RκD\mathbb{R}^D_\kappa. This metric coincides with the metric of de Sitter space-time. We analyze the structure of unitary representations of the group RκD\mathbb{R}^D_\kappa relevant for the realization of the non-commutative κ\kappa-Minkowski space by embedding into (2D1)(2D-1)-dimensional Heisenberg algebra. Using a suitable set of generalized coherent states, we select the particular Hilbert space and realize the non-commutative κ\kappa-Minkowski space as an algebra of the Hilbert-Schmidt operators. We define dequantization map and fuzzy variant of the Laplace-Beltrami operator such that dequantization map relates fuzzy eigenvectors with the eigenfunctions of the Laplace-Beltrami operator on the half of de Sitter space-time.Comment: 21 pages, v3 differs from version published in Fortschritte der Physik by a note and references added and adjuste

    Dissipative particle dynamics study of solvent mediated transitions in pores decorated with tethered polymer brushes in the form of stripes

    Full text link
    We study self-assembly of a binary mixture of components A and B confined in a slit-like pore with the walls modified by the stripes of tethered brushes made of beads of a sort A. The emphasis is on solvent mediated transitions between morphologies when the composition of the mixture varies. For certain limiting cases of the pore geometry we found that an effective reduction of the dimensionality may lead to a quasi one- and two-dimensional demixing. The change of the environment for the chains upon changing the composition of the mixture from polymer melt to a good solvent conditions provides explanation for the mechanism of development of several solvent mediated morphologies and, in some cases, for switching between them. We found solvent mediated lamellar, meander and in-lined cylinder phases. Quantitative analysis of morphology structure is performed considering brush overlap integrals and gyration tensor components.Comment: 14 pages, 12 figure
    corecore