212 research outputs found

    Tuneable quantum interference in a 3D integrated circuit

    Full text link
    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract a Fisher information approaching a theoretical maximum, demonstrating the capability of the device for quantum enhanced phase measurements.Comment: 11 pages, 24 figure

    Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide

    Full text link
    We demonstrate a monolithically integrable heralded photon source in a femtosecond laser direct written glass waveguide. The generation of photon pairs with a wide wavelength separation requires a concomitant large birefringence in the normal dispersion regime. Here, by incorporation of side-stress tracks, we produce a waveguide with a birefringence of 1.64× 1041.64\times~10^{-4} and propagation loss as low as 0.21 dB/cm near 980~nm. We measure photon pairs with 300~nm wavelength separation at an internal generation rate exceeding 5.05×1065.05\times10^6/s. The second order correlations indicate that the generated photon pairs are in a strongly non-classical regime.Comment: 5 pages, 5 figure

    Investigation of ultrafast laser photonic material interactions: challenges for directly written glass photonics

    Get PDF
    Currently, direct-write waveguide fabrication is probably the most widely studied application of femtosecond laser micromachining in transparent dielectrics. Devices such as buried waveguides, power splitters, couplers, gratings and optical amplifiers have all been demonstrated. Waveguide properties depend critically on the sample material properties and writing laser characteristics. In this paper we discuss the challenges facing researchers using the femtosecond laser direct-write technique with specific emphasis being placed on the suitability of fused silica and phosphate glass as device hosts for different applications.Comment: 11 pages, 87 references, 11 figures. Article in revie

    Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors

    Full text link
    Metallic gratings were fabricated using high energy laser interference lithography with a frequency tripled Nd:YAG nanosecond laser. The grating structures were first recorded in a photosensitive layer and afterwards transferred to an Au film. High quality Au gratings with a period of 770 nm and peak-to-valley heights of 20-60 nm exhibiting plasmonic resonance response were successfully designed, fabricated and characterized.Comment: 10 pages, 7 figure

    On-chip generation of heralded photon-number states

    Get PDF
    Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, \textit{i.e.}, non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5±\pm8\% and 95.0±\pm8\%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits

    Hybrid photonic circuit for multiplexed heralded single photons

    Get PDF
    A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high efficiency periodically poled lithium niobate waveguides, low-loss laser inscribed circuits, and fast (>1 MHz) fibre coupled electro-optic switches. Hybrid interfacing different platforms is a promising route to exploiting the advantages of existing technology and has permitted the demonstration of the multiplexing of four identical sources of single photons to one output. Since this is an integrated technology, it provides scalability and can immediately leverage any improvements in transmission, detection and photon production efficiencies.Comment: 5 pages, double column, 3 figure

    Starlight Demonstration of the Dragonfly Instrument: an Integrated Photonic Pupil Remapping Interferometer for High Contrast Imaging

    Full text link
    In the two decades since the first extra-solar planet was discovered, the detection and characterization of extra-solar planets has become one of the key endeavors in all of modern science. Recently direct detection techniques such as interferometry or coronography have received growing attention because they reveal the population of exoplanets inaccessible to Doppler or transit techniques, and moreover they allow the faint signal from the planet itself to be investigated. Next-generation stellar interferometers are increasingly incorporating photonic technologies due to the increase in fidelity of the data generated. Here, we report the design, construction and commissioning of a new high contrast imager; the integrated pupil-remapping interferometer; an instrument we expect will find application in the detection of young faint companions in the nearest star-forming regions. The laboratory characterisation of the instrument demonstrated high visibility fringes on all interferometer baselines in addition to stable closure phase signals. We also report the first successful on-sky experiments with the prototype instrument at the 3.9-m Anglo-Australian Telescope. Performance metrics recovered were consistent with ideal device behaviour after accounting for expected levels of decoherence and signal loss from the uncompensated seeing. The prospect of complete Fourier-coverage coupled with the current performance metrics means that this photonically-enhanced instrument is well positioned to contribute to the science of high contrast companions.Comment: 10 pages, 7 figures, accepted to Mon. Not. of Roy. Ast. Soc., 201

    Point-by-point inscription of apodized fiber Bragg gratings

    Full text link
    We demonstrate apodized fiber Bragg gratings inscribed with a point-by-point technique. We tailor the grating phase and coupling amplitude through precise control over the longitudinal and transverse position of each laser-inscribed modification. This method of apodization is facilitated by the highly-localized, high-contrast modifications generated by focussed IR femtosecond laser inscription. Our technique provides a simple method for the design and implementation of point-by-point fiber Bragg gratings with complex apodization profiles.Comment: 6 pages, 4 figures, article in revie

    Two-photon quantum walks in an elliptical direct-write waveguide array

    Full text link
    Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-light tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.Comment: 8 pages, 7 figure
    corecore